

The University of Manchester

The US and European neutrino programmes

Justin Evans

The US neutrino programme

$$\begin{cases} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ c_{ij} = \cos\theta_{ij}; s_{ij} = \sin\theta_{ij} \end{cases}$$

Flavour

$$\begin{pmatrix}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{pmatrix} = \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix} \begin{pmatrix}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{pmatrix}$$

$$c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij}$$

Flavour

$$\begin{pmatrix}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{pmatrix} = \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix} \begin{pmatrix}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{pmatrix}$$

$$c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij}$$

Flavour

$$\begin{pmatrix}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{pmatrix} = \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix} \begin{pmatrix}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{pmatrix}$$

CP violation $c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij}$

More neutrinos?

Flavour Mass
$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 \mathcal{V}_S $c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij} \quad \mathcal{V}_4$
?

Liquid argon

Unprecedented detail in imaging neutrino interactions >Including hadronic final state

 $\nu_e,\,\nu_\mu,\,NC,\,CC$ separation

Separation of interactions into exclusive final states

MicroBooNE – pioneering liquid argon

Electric field calibration with lasers and cosmic muons

Calorimetry calibration with crossing muons and π^{0} samples

Signal Processing:

From raw signals on wires to 2D reconstructed "hits"

We have made the first complete assessment of systematic uncertainties in a LArTPC arXiv:2111.03556

The University of Milli CroBooNE search for electron-like appearance

MANCHESTER

The University of Mar MeicroBooNE constraints on eV sterile neutrinos

MANCHESTER

MicroBooNE – Neutrino interactions

MicroBooNE – a BSM factory

14

MicroBooNE – more to come

This data (~50%) analysed so far

The SBN programme

2 Time Projection Chambers for a total of 4m x 4m x 5m

Photo Detection System: 120 PMTs 192 X-Arapucas

TPC is complete

SBND physics programme

5000 ν events per day

 \succ 1.2M ν_{μ} & 12k ν_{e} CC events per year

Unprecedented understanding of neutrino interactions on argon

> Argon is a heavy, complex nucleus> Vital input to DUNE

A near detector for SBN

Broad programme of BSM searches

MANCHESTER

- Liquid scintillator low-Z tracking calorimeter
- > NuMI v_{μ} beam

Plane

 Pioneering use of deep learning for image classification in neutrino physics

The University of Manchester

NOvA (and T2K)

- θ₂₃ still consistent with 45°
 No strong preference between mass orderings
- >T2K drives a preference for δ_{CP} somewhere around $3\pi/2$

Joint NoVA-T2K analysis expected in the next few months

The University of Manchester

NOvA and sterile neutrinos

DUNE

Wideband beam enables δ_{CP} and the mass hierarchy to be determined in the same experiment

Regardless of true values

DUNE physics programme

- CP violation Mass hierarchy
- Precision oscillation measurements
- Supernova detection
- **BSM** physics
 - Sterile neutrinos, dark matter, non-standard interactions, extra dimensions...
- Neutrino interaction physics

UK leadership in DUNE

UK is building the majority of readout planes (APAs) for the first 10 kt module

Major construction factory at Daresbury

UK is providing the DAQ for the first two 10 kt modules

And contributing to ND DAQ

UK is delivering Pandora reconstruction

UK leadership in LBNF

Daresbury and RAL are world centres of accelerator expertise

Producing RF cavities for the PIP-II upgrade for the LBNF 1.2 MW beam

> And eventual 2.4 MW goal

Delivering the LBNF proton target

DUNE near detector DUNE ND-Phase I

Multi-component near detector

- Highly segmented LArTPC
- Magnetised tracker
- Electromagnetic calorimeter
- Moveable components for offaxis measurements (DUNE-PRISM)

Rich non-oscillation physics programme

>100 million v interactions

Off-axis movement samples different beam energies to disentangle flux and crosssection uncertainties

target to FD modules

DUNE near detector

Multi-component near detector

- Highly segmented LArTPC
- Magnetised tracker
- Electromagnetic calorimeter
- Moveable components for offaxis measurements (DUNE-PRISM)

Rich non-oscillation physics programme

>100 million v interactions

DUNE ND—Phase II

DUNE Near Detector – UK Involvement

Physics

- > Studies for design and development
- Impact of ND on oscillation analyses
- > Development of PRISM analyses

Phase I

- > DAQ support for all detectors, leveraging work from DAQ development for FD modules
- Reconstruction and simulation, leveraging work from development for FD modules
 TMS

Phase II

- > Readout development for gaseous argon detector
- > High-pressure GAr TPC test stand construction and operation
- > Interest in pursuing further construction opportunities for Phase II

DUNE phase II

The **<u>ultimate</u>** DUNE scope is

- Four far detector TPC modules with up to 70 kt of liquid argon
- A near detector that includes a liquid-argon TPC
- > A 1.2 MW beam upgradeable to 2.4 MW

This is needed to achieve the DUNE physics goals as identified by P5

2nd Module of Opportunity workshop in Valencia, 2—4 November

https://arxiv.org/abs/2203.07501

SoLAr pixel collaboration

- VK-led collaboration
- Combine SiPMs and charge readout pads on a single tile
- Extends the DUNE ND pixel concept to the FD
- Can extend FD physics sensitivity to lower energies (solar neutrinos)
- Plan to install a physics prototype in Boulby as part of the SOLAIRE project

CERN Neutrino Platform

- CERN neutrino platform is a vital part of the DUNE programme
- ProtoDUNE programmes to demonstrate the technology for our first two FD modules
 - And to make physics measurements of charged particles in argon
- Significant UK presence at the neutrino platform
 - > APAs and DAQ provided for ProtoDUNEs

Neutrinos at the LHC: FASER ν

- > A far-forward emulsion detector: 480 m from ATLAS, 1.3 t of tungsten-emulsion layers, $\eta > 8.8$
- > LHC run 3 expectations: 1,300 v_e , 20,000 v_μ and 20 v_τ at TeV energies
- TeV-energy cross-section measurements
- > Forward particle production to validate underlying hadronic interaction models
- > Observation of heavy quark production in v interactions
- > arXiv:2105.06197: First neutrino interaction candidates at LHC from a prototype detector
- UK involved in the silicon strip tracker that interfaces with FASER (Manchester, Liverpool, RHUL, Sussex)

Neutrinos at the LHC: SND@LHC

- 1 tonne detector, 480 m from ATLAS, 7.2 < η < 8.4, ~2,000 neutrino interactions expected \geq
 - More off-axis than FASERnu
- Emulsion-tungsten target region, with downstream muon spectrometer \geq
- v_{e} and v_{τ} mainly produced in charm decays in ATLAS: enables constraints of charm PDFs \geq
- Also sensitive to feebly interaction DM-type particles produced in LHC collisions \geq
- UK (UCL & IC) contributing to track & vertex reconstruction, and emulsion purchase \geq

PRL 122 (2019) 041101

Conclusion

The UK is the leading non-US partner in the US neutrino programme

- > Providing major hardware fundamental to DUNE and SBND
- > Leading neutrino reconstruction algorithm development with Pandora
- > Driving many physics analyses
- Enabling the LBNF and PIP-II MW-beam programmes with proton-target and RF-cavity delivery

CERN Neutrino Platform is integral to the DUNE programme

And the LHC is starting to do neutrino physics!