Kaons decay experiments: NA62, HIKE, KOTO

Evgueni Goudzovski

UNIVERSITY^{OF} BIRMINGHAM

Outline:

- 1) Introduction: rare kaon decays
- 2) NA62 at CERN: $K^+ \rightarrow \pi^+ \nu \nu$ and other measurements
- 3) HIKE at CERN: long-term plans for kaon experiments
- 4) KOTO at J-PARC: search for $K_L \rightarrow \pi^0 \nu \nu$
- 5) Summary

PPAP community meeting Manchester, 22 September 2022

$K \rightarrow \pi \nu \nu$ in the Standard Model

SM: Z-penguin and box diagrams

"Golden modes": extremely rare decays, precise SM predictions.

- ♦ Maximum CKM suppression: $(m_t/m_W)^2 |V_{ts}^*V_{td}|$.
- ✤ No long-distance contributions from amplitudes with intermediate photons.
- Hadronic matrix element extracted from measured $BR(K_{e3})$ via isospin rotation.
- European strategy update 2020: recognised as essential activity.

Mode	Standard Model BR	Experimental status
$K^+ \rightarrow \pi^+ \nu \nu$	(8.60±0.42)×10 ⁻¹¹	(10.6±4.0)×10 ⁻¹¹ (NA62 Run 1)
$K_L \rightarrow \pi^0 \nu \nu$	(2.94±0.15)×10 ⁻¹¹	BR<300×10 ⁻¹¹ at 90% CL
		(KOTO 2015 data)

Standard Model BR: a new $|V_{cb}|$ and γ -independent determination. [Buras and Venturini, arXiv:2109.11032]

E. Goudzovski / PPAP meeting, 22 Sep 2022

$K \rightarrow \pi \nu \nu$ and new physics

- Correlations between BSM contributions to K⁺ and K_L BRs. [JHEP 11 (2015) 166]
- Need to measure both K⁺ and K_L to discriminate among BSM scenarios (within SM, this allows for a clean β angle measurement).
- Correlations with other observables (ϵ'/ϵ , ΔM_K , B decays). [JHEP 12 (2020) 97]

- ◆ Green: CKM-like flavour structure
 ✓ Models with MFV
- Blue: new flavour-violating interactions in which LH or RH couplings dominate
 - Z' models with pure LH/RH couplings
- Red: general NP models without the above constraints
- ★ The Grossman-Nir bound: a model-independent relation $\frac{\text{BR}(K_L \rightarrow \pi^0 v \bar{v})}{\text{BR}(K^+ \rightarrow \pi^+ v \bar{v})} \times \frac{\tau_+}{\tau_L} \leq 1$

2

Kaon experiments at CERN

NA62 collaboration, JINST 12 (2017) P05025

Beamline & detector

- ♦ In 2018, 1 year of operation $\approx 10^{18}$ protons on target; 4×10^{12} K⁺ decays.
- ✤ Single event sensitivities for K⁺ decays: approaching BR~10⁻¹².
- ★ Kinematic rejection factors: 1×10^{-3} for $K^+ \rightarrow \pi^+ \pi^0$, 3×10^{-4} for $K \rightarrow \mu^+ \nu$.
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma\gamma$ decay suppression (for E_{π0}>40 GeV) ~10⁻⁸.
- Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁸ muon suppression.

E. Goudzovski / PPAP meeting, 22 Sep 2022

NA62 datasets

✤ Run 1 (2016–18):

✓ Sample 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.

- ✓ Sample 2017 (160 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ✓ Sample 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.

Run 2 (2021–): in progress (~3×10¹² ppp), approved till LS3.

UK leadership in NA62

350

300

250

200

150

100

50

UK roles in NA62 collaboration:

- ✤ Spokesperson (2019–22).
- Conference Committee chair (2022–25).
- ✤ Rare decay analysis convener.
- Two Editorial Board members.
- KTAG subdetector: full M&O responsibility.
- High-Level Trigger coordination.
- Software and distributed computing (in-kind support via GridPP).

UK leadership in Run 1 physics analysis:

- ♦ The flagship $K^+ \rightarrow \pi^+ \nu \nu$ measurement.
- ✤ Rare decays (K⁺→π⁺μ⁺μ⁻, K⁺→π⁺γγ, ...), world's largest samples by far.
- Searches for hidden sectors and lepton number/flavour violation in K⁺ decays.

 $z=(m_{\gamma\gamma}/m_K)^2$

NA62: $K_{\pi\nu\nu}$ signal regions

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Resolution on m_{miss}^2 : $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$.

Measured kinematic background suppression:

✓ K⁺→ $\pi^{+}\pi^{0}$: 1×10⁻³; ✓ K⁺→ $\mu^{+}\nu$: 3×10⁻⁴.

Further background suppression:

- PID (calorimeters & RICH):
 μ suppression 10⁻⁸,
 π efficiency = 64%.
- ✓ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ rejection factor = 1.4×10⁻⁸.

7

Searches for hidden sectors

NA62 Run 2: 2021-LS3

- ✤ Run 2: K⁺→ $\pi^+\nu\nu$ measurement at O(10%) precision in a low-background, high-acceptance regime, with an established technique.
- Modifications of the setup for background reduction:
 - ✓ fourth kaon beam tracker (GTK) station;
 - ✓ rearrangement of beamline elements around the GTK achromat;
 - \checkmark new veto hodoscopes upstream of the decay volume;
 - \checkmark an additional veto counter around downstream beam pipe.
- Improved TDAQ: beam intensity increased by ~30% wrt Run 1.
- Collection of 10¹⁸ pot in up to 90 days in beam dump mode is foreseen.

E. Goudzovski / PPAP meeting, 22 Sep 2022

Fixed target runs at CERN SPS

- SPS fixed target operation foreseen until at least 2038.
- HIKE ("High-Intensity Kaon experiments"): a long-term programme rare kaon decay programme at the SPS.
- ↔ A series of K^+ and K_L decay experiments, located in the NA62 hall.
- Beam intensity: with up to ×6 the NA62 (~1.5×10¹⁹ pot/year).
- ✤ A clear insight into the flavour structure of new physics.
- ✤ A few times 10¹⁹ pot to be collected in beam dump mode.
- Snowmass contributed paper: arXiv:2204.13394.
- Lol to be submitted to the SPSC in Nov 2022.

E. Goudzovski / PPAP meeting, 22 Sep 2022

HIKE step 1: $K^+ \rightarrow \pi^+ \nu \nu$

A multi-purpose K⁺ experiment focused on K⁺ $\rightarrow \pi^+\nu\nu$ at ~5% precision.

- ✓ Challenge: 20 ps time resolution for key detectors to keep random veto under control, while maintaining all other NA62 specifications.
- ✓ Challenges aligned with HL-LHC projects and future flavour/dark matter exp.

New pixel beam tracker (GTK):

time resolution: <50 ps per plane; pixel size: <300×300 μm²; efficiency: >99% per plane (incl.fill factor); material budget : 0.3–0.5% X₀; beam intensity: >3 GHz on 30×60 mm²; peak intensity: >8.0 MHz/mm².

A current NA62 GTK station

E. Goudzovski / PPAP meeting, 22 Sep 2022

New STRAW spectrometer:

operation in vacuum; straw diameter/length: 5 mm/2.2 m; trailing time resolution: ~6 ns per straw; maximum drift time: ~80 ns; layout: ~21000 straws (4 chambers); total material budget: 1.4% X₀.

A current NA62 STRAW chamber

HIKE step 2: neutral (K_L) beam

- ✤ A K_L rare-decay experiment with charged-particle detection and PID:
 - ✓ a high-energy K_L beam (up to 80 GeV/c mean momentum);
 - \checkmark minor layout modifications wrt step 1; some detectors removed.
- Physics objectives:
 - ✓ $K_L \rightarrow \pi^0 \ell^+ \ell^-$: excellent $\pi^0 \rightarrow \gamma \gamma$ mass resolution is essential to reduce the Greenlee background ($K_L \rightarrow \gamma \gamma \ell^+ \ell^-$);
 - ✓ lepton flavour violation at 10^{-12} level: $K_L \rightarrow (\pi^0)(\pi^0)\mu e$, $K_L \rightarrow 2\mu 2e$;
 - \checkmark precision measurements of rare K_L decays;
 - \checkmark searches for hidden sector mediators in K_L decays.
- Characterisation of the neutral beam for a future $K_L \rightarrow \pi^0 v v$ experiment:
 - \checkmark measurements of K_L, n, \land and beam halo fluxes;
 - \checkmark KOTO experience suggests this to be critical.

HIKE step 3: $K_L \rightarrow \pi^0 \nu \nu$

- * KLEVER: a dedicated $K_L \rightarrow \pi^0 vv$ experiment, $\langle p(K_L) \rangle = 40$ GeV/c.
- Photons from K_L decays boosted forward: veto coverage only up to 100 mrad.
 Vacuum tank layout and fiducial volume similar to NA62.
- A longer beamline is needed for $\Lambda \rightarrow n\pi^0$ background suppression.

KOTO at J-PARC: $K_L \rightarrow \pi^0 \nu \nu$

- Primary beam: 30 GeV protons; 60 kW = 6.6×10¹³/5.2 s (in 2021).
- Neutral pencil beam (produced at 16°):
 <p(K_L)> = 2.1 GeV/c.
- Composition: K_L, neutrons, photons.
- Decay region length: ~2 m.
- Hermetic photon detector, including a CsI calorimeter.

Csl - calorimeter

<u>2015 run</u>

With 2.2×10¹⁹ pot, BR($K_L \rightarrow \pi^0 vv$)<3.0×10⁻⁹ [PRL 122 (2019) 021802]

2016-18 runs

With 3.05×10^{19} pot, BR(K_L $\rightarrow \pi^{0}vv$)<4.9×10⁻⁹ [PRL 126 (2021) 121801] 15

KOTO: the 2016-18 result

- ♦ Number of K_L decays (from $K_L \rightarrow 2\pi^0$): $N_K = 6.8 \times 10^{12}$.
- Expected SM signal: 0.04 events, a factor 1.8 larger than for 2015 data.
- Estimated background: 1.22±0.26 events (mainly from K[±] decays).
- Three candidate events in the signal region [compatible with background].

KOTO short-term plans

[Koji Shiomi @ Kaon 2022]

- ✤ Analysis of the 2021 dataset is being finalised.
- ♦ Beam power to be increased ($60 \rightarrow 100 \text{ kW}$).
- Further improvements to the detector.
- ✤ Single-event sensitivity below 10⁻¹⁰ is expected by 2026.

KOTO long-term plan: step-2

 K_L

To reach O(100) signal events:

- Proton beam power above 100 kW.
- New neutral beamline at 5° with <p(K_L)> = 5.2 GeV/c.
- ✤ Larger fiducial decay volume.
- Complete rebuild of the detector.
- Hadron hall extension required, approved by J-PARC.
- Design work is in progress.
 [arXiv:2204.13394, Hajime Nanjo @ Kaon 2022]

< 2.0 GeV/c 1.8x10⁸ pion/spill 5 deg extraction x10 better Dp/p ~5.2 GeV/c K⁰ < 1.2 GeV/c Good n/K HIHR ~10⁶ K⁻/spill K1.1 2.0 GeV/c .1 GeV/c **TEST BL** <10 GeV/c separated pion, kaon, pbar ~10⁷/spill K⁻, pbars Hiah-p 105 m GeV proton Muon <31 GeV/c unseparated 2ndary beams (mostly pions), ~107/spill

Expected step-2 sensitivity:

- ✤ Signal acceptance: 5× KOTO step-1.
- ★ 60 SM events with S/B~1 Step-2 at 100 kW beam power (3×10⁷ s).
- ↔ Aiming at ~5 σ SM K_L $\rightarrow \pi^0 \nu \nu$ discovery.

Opportunity in the kaon sector

- ★ Measurements of $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \nu \nu$ rates to ~10% precision: model-independent tests for new physics at the O(100 TeV) scale.
- \clubsuit A possibility to find a clear evidence for deviation from the SM.
- Correlations with other observables will play a crucial role.

Summary

UK participation in NA62 since 2011:

- ✓ Funding during the construction phase:
 ERC Advanced & Starting Grants, two Royal Society Fellowships.
- $\checkmark\,$ Exploitation funded by the STFC Consolidated Grant.
- ✓ STFC Rutherford fellowships; GridPP support; EU Marie-Curie grants.
- ✓ Strong UK leadership: excellent value for STFC investment.

✤ Analysis of Run 1 (2016–18) data:

- ✓ First measurement of the K⁺→ $\pi^+\nu\nu$ decay, led by UK: BR(K⁺→ $\pi^+\nu\nu$) = (10.6±4.0)×10⁻¹¹, based on 20 candidates.
- ✓ Multiple UK-led publications on rare/forbidden decays. [PLB 807 (2020) 135599, PRL 127 (2021) 131802, JHEP 03 (2021) 058, PLB 816 (2021) 136259, PLB830 (2022) 137172]

Next steps:

- ✓ NA62 Run 2 approved until LS3: K⁺→ $\pi^+\nu\nu$ measurement at 10%.
- HIKE: high-intensity kaon decay programme at the SPS, synergistic with LHC in terms of physics and technology challenges. Lol to be submitted to the SPSC in Nov 2022.

Expected backgrounds (2018 data)

✤ Most background is not due to K⁺ decays in the vacuum tank.

Improved the beamline layout and new upstream veto detectors bring the Run 2 measurement into a low-background regime.

History of $K^+ \rightarrow \pi^+ \nu \nu$ searches

KOTO: backgrounds (2016–18)

✤ A dedicated dataset collected in 2020: K[±] flux measured using K[±] $\rightarrow \pi^{\pm}\pi^{0}$ decays.

E. Goudzovski / PPAP meeting, 22 Sep 2022

Calibration of K₁ halo in simulation using reconstructed $K_{L} \rightarrow 3\pi^{0}$ events.

KOTO detector area

 $K_L \rightarrow$

Ζντχ

CSI calorimeter

KOTO: improvements in 2019–21

Need ~20 times improvement in background rejection to obtain $S/B \approx 1$, assuming SM signal rate.

Upstream charged-particle veto: prototype installed for 2020 run, final version available in 2021.

Reduction of K^{\pm} background: $f \sim 20$.

Dual-side Csl calorimeter readout: installed for the 2019 run; γ/n interaction depth resolved by reading light from front CsI face with SiPMs.

Reduction of neutron bkg: f~50.

E. Goudzovski / PPAP meeting, 22 Sep 2022