Precision Muon/LFV and EDMs

Mark Lancaster

The University of Manchester

UK: Bristol, Cockcroft, Imperial, Lancaster, Liverpool, Manchester, Oxford, UCL involved in 6 experiments Also lot of (g-2) theory work in UK: Edinburgh, Glasgow, Liverpool, Manchester, Plymouth, Southampton

Precision Muon/LFV and EDMs

Mark Lancaster

Two Types of Measurement

Looking for a deviation from precise SM prediction e.g. (g-2), LFU

Looking for a signal that is essentially zero in the SM

e.g. muon electric dipole moment (EDM) or charged lepton flavour violation (CLFV)

Precision Muon/LFV and EDMs

Mark Lancaster

Why Muons?

Can be produced in large numbers and live long enough

Mu2e/COMET have sensitivity to BR ($h
ightarrow \mu e$) of 10⁻¹⁰

Precision Muon/LFV and EDMs

Mark Lancaster

Access to high mass scales

Updated from A. de Gouvea, P. Vogel, arXiv:1303.4097

Precision Muon/LFV and EDMs

Mark Lancaster

Muon g-2

NEWS

Home | Coronavirus | Brexit | UK | World | Business | Politics | Tech | Science | Health | Family & Education | Science & Environment

Muons: 'Strong' evidence found for a new force of nature

By Pallab Ghosh Science correspo

③ 7 April

'Last Hope' Experiment Finds Evidence for Unknown Particles

🗬 27 | 🔳

Today's long-anticipated announcement by Fermilab's Muon g-2 team appears to solidify a tantalizing conflict between nature and theory. But a separate calculation, published at the same time, has clouded the picture.

Cockcroft, Lancaster, Liverpool, Manchester, UCL

Precision Muon/LFV and EDMs

Mark Lancaster

Muon g-2

Most precise quantity measured at a particle accelerator

2021 FNAL measurement based on a dataset of similar size to BNL ~ 10 billion μ^+ SM predictions stable until day after 2021 measurement PRL

Cockcroft, Liverpool, Manchester, UCL

Precision Muon/LFV and EDMs

Mark Lancaster

Result from a 22 Parameter Fit

Statistical uncertainty : 434 ppb

Largest correction to data is : 489 ppb (total correction is 456 ppb)

Total systematic uncertainty : 157 ppb (aim was 100 ppb)

Deviation from e⁺e⁻ SM (with BNL) : 2150 ppb

Precision Muon/LFV and EDMs

Next FNAL measurements

Exp-SM discrepancy (with e^+e^-): 2150 ± 350 (expt) ± 370 (theory) ppb is of comparable size to the SM EWK contribution to g-2.

Much work on understanding the e⁺e⁻ SM prediction vs lattice SM prediction

Run-2/3 will be published next year : should reduce statistical uncertainty by ~ 2 and so get uncertainty: 215 (stat.) \oplus 100 (sys.) ~ 240 ppb (vs 460 ppb Run-1)

Final analysis: including Runs-4/5/6 : stat. to be ~ same as syst i.e. 100 \oplus 100 ppb

Precision Muon/LFV and EDMs

Mark Lancaster

Theory & Interpretation

TeV Leptoquarks Z', ALPs LHC evading SUSY Tweaked Higgs extensions ...

The fact that discrepancy is "large" (~ EWK contribution) and existing experimental constraints mean that BSM models tend to be in non-traditional parameter regions....

And low energy (keV-MeV) phenomena

Precision Muon/LFV and EDMs

Mark Lancaster

SM Prediction

The analysis of e^+e^- data can be made to match the BMW lattice prediction if the measured cross sections below 0.7 GeV are shifted by 7%.

In this region there is data from 9 independent $\Delta a_{had}^{(5)} \times 10^{(5)}$ experiments: the most precise experiments (KLOE, BaBar, CMD, SND,) quote cross section uncertainties of 0.5-1%...

Implication of BMW results is that there are issues with the e^+e^- measurements (below 0.7 GeV) or a flaw in the e^+e^- or lattice theory

If this is true then $\Delta \alpha_{\rm HAD}^{(5)}$ is affected and so are the global EWK fits since they use e⁺e⁻ data

Tension in SM M_W , M_H vs measured M_W , M_H

Mark Lancaster

SM Prediction

BMW is presently the only sub 1% (HVP) lattice calculation in the full kinematic region Cross-checks recently performed but only **in limited** (30%) (distance) region.

Lattice (full region) and e^+e^- determinations now being done blinded.

Precision Muon/LFV and EDMs

Mark Lancaster

Cross checking the theory with experiment (MUonE)

Precision Muon/LFV and EDMs

Mark Lancaster

Charged Lepton Flavour Violation (cLFV)

In SM: neutrino oscillations (masses) are intimately connected with charged lepton flavour violation

and also in BSM: $\nu_{RH} \rightarrow l^- H^+$

And thus to extensions to the Higgs sector.

Precision Muon/LFV and EDMs

Mark Lancaster

Charged Lepton Flavour Violation (cLFV)

Precision Muon/LFV and EDMs

Mark Lancaster

COMET @ JPARC

Phase-I

Phase-II

Precision Muon/LFV and EDMs

Mark Lancaster

Precision Muon/LFV and EDMs

Mark Lancaster

Mu2e / COMET-I

Beam commissioning 2023 Physics running 2024/25

Precision Muon/LFV and EDMs

Mark Lancaster

10³ improvement in limit - Phase-I & further factor of ~ 10 (Phase-II) with HIMB 10¹⁰ μ /sec upgrade

Bristol, Liverpool, Oxford, UCL

Commissioning now : physics run: 2025

Precision Muon/LFV and EDMs

Mark Lancaster

MuEDM at PSI

LHCb / g-2 measurements hint that muon interactions may harbour BSM and lepton universality not sacred.

Motivates search beyond chirality flipping, flavour violating interactions to CP-violating interactions.

Enhancements beyond mass scaling possible in many BSM scenarios

New experiment at PSI to extend x10 (Phase-I) beyond FNAL g-2 and then 2 more orders of magnitude in Phase-II using HIMB PSI upgrade to 2 x10⁻²³ e.cm

Precision Muon/LFV and EDMs

Mark Lancaster

Muon EDM at PSI

"Frozen spin" technique disappears (g-2) using judicious p, E-field choice

$$\vec{\omega} = \frac{q}{m} \left[a\vec{B} + \left(\frac{1}{1-\gamma^2} + a\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta_d}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B}\right) \right]$$

Signature: vertical oscillation

MuEDM Phase-1

- verify frozen-spin condition can be achieved
- lateral injection, straw-tube tracker, $10^8 \ \mu/s$

MuEDM Phase-2

- Vertical injection, thinned Si tracker, $10^{10} \ \mu/s$

Sol to STFC for Phase-I submitted and proposal UKRI Infrastructure Fund for Phase-I/II

Cockcroft, Lancaster, Liverpool, Manchester, UCL

Precision Muon/LFV and EDMs

Mark Lancaster

Proton EDM at BNL

Utilises similar frozen spin methodology

Prior EDM measurements used atoms but 4 orders of magnitude (10⁻²⁹ ecm) improvement by using dedicated proton storage ring : 700 MeV, 800m circumference, 4.4 MV/cm E-field.

Precision Muon/LFV and EDMs

Mark Lancaster

Conclusions

Interesting time for muon physics with a vibrant, leading UK involvement.

Final Muon g-2 results in next 2-3 years and Mu2e/COMET/Mu3e to start data taking - subject of bids to PPGP for exploitation.

Opportunity now to develop frozen spin EDM technique initially on muons (PSI) & then protons (BNL) to extend EDM sensitivities by 3-4 orders of magnitude.

Latter two and phase-2 of Mu3e subject of UKRI infrastructure bid : low-mass tracking.

Precision Muon/LFV and EDMs

Mark Lancaster