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Abstract

We consider measurable quantities calculated in massless perturbative QCD in a variety of schemes, including the symmetric momentum subtraction schemes, up to the four-loop level in order to investigate
scheme dependence in the perturbative series as a theory lab. Appropriate error values should be attached to estimates of physical results which can be done by asserting that renormalization group
invariance is true to order in truncation. Scheme invariance is investigated as a measure of error using measurements to calculate αMS(MZ) from different schemes as a point of comparison for the results.

Renormalization

Renormalization is the procedure through which divergences in interacting Quantum Field
Theories are removed by mapping variables onto renormalized parameters e.g.

ψ → Z
−1

2

ψ ψ0 = ψR, (1)

and requiring the bare Green’s functions are finite.
The conditions ensuring this is realised define the scheme, practically this means selecting for the

finite components of the renormalization group functions e.g. Zψ.
Measurable quantities should not depend on the choice of scheme as this is a calculational
artifact, however in perturbation theory this can only be ensured to order in truncation, i.e., the
difference of the values calculated for a measurable ρ in two schemes S1 and S2 up to order N is

ρS1(N)(Q)− ρS2(N)(Q) = O(a0(Q)
N+1) (2)

where a0(Q) is the leading order coupling constant.

Kinematic and Non-Kinematic Schemes

The Minimal Subtraction scheme (MS) sets the finite contribution to the counter-terms to zero
and the modified Minimal Subtraction scheme (MS) changes MS by defining counter-terms to
remove factor of 4πe−γ from calculations.
These schemes are computationally simple because the finite order contributions from the ϵ
expansion in dimensional regularisation do not need to be calculated.
However, these schemes offer no reference to kinematics and can be expensive on the lattice

making matching calculations more difficult.
Additionally, MS schemes are in many ways special, so it is difficult to draw universal conclusions
about the underlying theory from these schemes alone therefore it is worthwhile considering other
schemes.
One category of kinematic scheme under particular consideration here are the symmetric

momentum subtraction schemes, which are defined by requiring

1 Gluon two point function has no loop corrections at a characteristic momenta p2 = −M 2

2 Characteristic vertex function has no finite order corrections in symmetric momentum
configuration p2i = −M 2

where the triple gluon vertex is used to define MOMg, quark-gluon is used to define MOMq and
ghost-gluon is used to define MOMc.

Changing Schemes

Four loop series for measurable ρ in scheme S1:

ρ(Q) ≈ ρS10 + ρS11 aS1(Q) + ρS12 a
2
S1
(Q) + ρS13 a

3
S1
(Q) + ρS14 a

4
S1
(Q) (3)

Process of changing schemes:

1 Apply perturbative expansion of coupling constant conversion functions calculated from
aS1 = (ZS2

g /Z
S1
g )2aS2and truncate series to current loop order

ρ(Q) ≈ ρS10 + ρS11 aS2(Q) + (ρS12 + cS1,S21 ρS11 )a2S2(Q) + (...)a3S2(Q) + (...)a4S2(Q) (4)

2 Write running in terms of renormalization scale

aS(Q,ΛS) ≈ 1

βS0 L
s

1− βS1 ln(L
S)

βS0
2
LS

+
βS1

2
(ln2(LS)− ln(LS)− 1) + βS0 β

S
2 )

βS0
4
LS2

+ ...

 (5)

which is calculated by perturbatively solving from the beta function d
dla = β(a).

3 Find common unit with Λ ratio

ΛS1
ΛS2

= exp
(cS1,S21

2β0

)
(6)

which is exact [4] and can be found by comparing expansion aS(Q,ΛS) and the coupling
constant conversion functions.

R-Ratio

We will here focus on the R-Ratio, which is a measurable quantity calculable in perturbative QCD
based on the cross-section of electron-positron annihilation resulting in hadronic products,
normalised by the cross-section of electron-positron annihilation resulting in a muon-anti-muon
pair, given by

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=

∑
i=0

Ria
i
S = R0 +R1aRR. (7)

Typically this is calculated using the optical theorem to find the corresponding square matrix
element

|M(e+e− → partons|2 = −2Re


e−

e+

e−

e+
q, νq, µ  . (8)

Theory Error In pQCD

Quantities calculated in perturbation theory are only approximations, so a measure of accuracy
should be applied to these estimates. Measurable objects are only renormalization group invariant
up to order in truncation and any deviations from it will only exist at O(aN+1). This can be used
to generate a theory error.
For example, for measurable ρ we have µ d

dµρ(Q, µ) = 0 to all orders, so by considering the
quantity at different scales we can construct the scale error, the standard theory error quoted.
As has been explored in e.g. [7], we can also use scheme difference as a measure of error.
Consider we have calculated the measurable in two schemes to order N

ρ(Q) = ρS1(N) +∆(ρS1, N,Q) = ρS2(N) +∆(ρS2, N,Q) (9)

where ∆(ρS, N,Q) represents our ignorance in the higher order of the series.
If the sign of ∆(ρS1, N,Q) and ∆(ρS2, N,Q) are different then ρS1(N) and ρ

S2
(N) bound the true

value ρ(Q), otherwise it will not be. By considering more schemes we may improve the probability
that true series lies in envelope given by the largest and smallest value of ρSi(N).

Graph

The four-loop R-Ratio calculation was completed for MS in [6] and the conversion functions [3]
could then be used to change the scheme for comparison. Below are graphs comparing the
R-Ratio effective coupling constant with Nf = 5 active quarks evaluated at Q = xΛMS in the MS,
mMOM, and MOMi schemes to the three- and four-loop level.

Clearly there is a large reduction in scheme difference between three- and four-loop. A
quantitative comparison can be made by solving numerically for the formal parameter
αMS(MZ) = 4πaMS(MZ) using experimental data of R = R∗ at momentum Q = QE, as is given
below where the ‘Average’ represents the scheme envelope of the measurement.

αRR = 0.13697± 0.01225
at QE = 82.15838 GeV [5]

Scheme N αMS(MZ) Scheme N αMS(MZ)

2 0.12725+0.01066−0.01053 2 0.12677+0.01054−0.01039

MS 3 0.12982+0.01126−0.01124 MOMc 3 0.13201+0.01203−0.01237

4 0.13056+0.01149−0.01154 4 0.13059+0.01150−0.01156

2 0.12635+0.01044−0.01027 2 0.12637+0.01045−0.01028

mMOM 3 0.13085+0.01162−0.01174 MOMg 3 0.13115+0.01171−0.01187

4 0.13081+0.01159−0.01169 4 0.13077+0.01157−0.01166

2 0.12650+0.01048−0.01031 2 0.12680± 0.00045+0.01066−0.01027

MOMq 3 0.13216+0.01203−0.01230 Average 3 0.13099± 0.00117+0.01203−0.01124

4 0.13024+0.01137−0.01137 4 0.13053± 0.00028+0.01159−0.01137

Note the small two-loop scheme difference is due to three loop term offering the same sign
convention so the envelope does may not include the true value of the series. The large
experimental error value means we cannot provide an experimentally interesting result, therefore
applying this process to more up to date data may be of phenomenological interest.

Conclusions

In this project we have

Calculated the perturbative series of the R-Ratio, Adler D function and Bjorken Sum rule up
to the four-loop level in the MS, mMOM and MOMi schemes and considered their running.

Investigated scheme dependence and found expected reduction as loop level is increased.

Considered the meaning of the envelope formed by considering series in different schemes.

To consider

Running of measurables outside of the Landau gauge for linear-covariant gauge fixing,

Using more up to date experimental data, applying methods to make perturbation theory
more valid at lower energies considered.
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