Symmetries and Standard Model Tests in B→DD

The University of Manchester

YTF Meeting, IPPP Durham, 15th-16th December 2022

View Poster Online!

INTRO

- Strong evidence for Physics beyond the Standard Model (SM)
- CP Violation (CPV) is too small to explain Baryon Asymmetry
- In new physics theories, we generally expect 𝒪(1) weak phases ⇒ significant CPV

AIMS

- 1. Assess the consistency of the SM with most recent experimental data
- 2. Predict unmeasured observables
- 3. Check validity of SU(3) Symmetry

TOPOLOGIES

Available set of topological diagrams for $B \rightarrow DD$ Decays

DECOMPOSITION

N	Iode	$\lambda_{cD}T$	$\lambda_{cD}A^{c}$	$\lambda_{uD} ilde{P_1}$	$\lambda_{uD}\tilde{P}_3$	$\lambda_{uD}A_1^u$	$\lambda_{uD}A_2^u$
Со	unting	1	$\varepsilon^{1.5}$	$\varepsilon^{2.5}$	$\varepsilon^{3.5}$	$\varepsilon^{2.5}$	$\varepsilon^{3.5}$
1 B ⁻ -	$\rightarrow D^-D^0$	1	0	-1	0	1	0
$2 B^{-}$ -	$\rightarrow D_s^- D^0$	1	0	-1	0	1	0
$3 \ \bar{B}^0 -$	$\rightarrow D_s^- D^+$	1	0	-1	0	0	0
$4 \bar{B}_s -$	$\rightarrow D^- D_s^+$	1	0	-1	0	0	0
$5 \ \bar{B}^0 -$	$\rightarrow D^-D^+$	1	1	-1	-1	0	0
$6 \bar{B}_s -$	$\rightarrow D_s^- D_s^+$	1	1	-1	-1	0	0
$7 \ \bar{B}^0 -$	$\rightarrow D_s^- D_s^+$	0	1	0	-1	0	0
$8 \bar{B}_s -$	$\rightarrow D^-D^+$	0	1	0	-1	0	0
$9~ar{B}^0$ -	$ ightarrow ar{D}^0 D^0$	0	-1	0	1	0	-1
$10 \bar{B}_s$ -	$\rightarrow \bar{D}^0 D^0$	0	-1	0	1	0	-1

Decay amplitudes in terms of topological parameters with appropriate suppression

(SOME) RESULTS

METHODS

- Expand in $(m_s m_d) / \Lambda_{OCD}$
- Express Amplitudes in terms of SU(3) matrix elements or topologies (see right)
- Apply first-order perturbations
- Construct χ^2 with current experimental data
- Profiled minimisation to extract observable predictions from symmetries

POWER COUNTING

We choose $\epsilon \sim 0.3$

- ullet CKM suppression- $\mathcal{O}(\epsilon)$: Where CKM factors cannot be separated from the hadronic matrix elements.
- SU(3) structure- $\mathcal{O}(\epsilon)$: For SU(3)-breaking contributions
- Colour suppression: Relative counting in 1/N $_{\rm C}$ ~ ε for the topologies, following Refs. 1-4.
- Penguin suppression:
 - \circ Tree matrix elements of penguin operators- $\mathscr{O}(\epsilon^2)$
 - \circ Penguin matrix elements of tree operators- $\mathscr{O}(\epsilon^{1/2})$
- Annihilation: $\mathscr{O}(\epsilon^{1/2})$ for annihilation diagram + $\mathscr{O}(\epsilon)$ for $c\overline{c}$ creation.

REFERENCES

- [1] t'Hooft, doi:10/b8g7xf
- [2] Buras et al., doi:10/d43jhv
- [3] Buras et al., doi:10/bnnssz
- [4] Jung et al., doi:10/jpw9

CONTACT INFO

jonathan.davies-7@manchester.ac.uk