

**YTF22** *15-16 Dec 2022* 

Alex Gough (they/them) with Cora Uhlemann

The complexity of cosmic large-scale structure encoded in a single wavefunction Gough & Uhlemann 2022 (OJAp); (2206.11918)



## **Newcastle University PhD studentships Applied Mathematics & Theoretical Physics in 2022-2023** https://www.ncl.ac.uk/postgraduate/fees-funding/search-funding/?code=S0000007

- <u>cosmology & quantum gravity</u>
- observational astronomy
- astro- & geophysical MHD
- quantum matter
- math biology

**Robinson Cosmology** NUdata CDT data-intensive astrophysics STFC & EPSRC for their respective areas





# Big questions

#### Afterglow of the early universe

Cosmic web of galaxies



#### nearly uniform

#### rich structure



# Dark matter: a piece of the puzzle



Center for Cosmological Physics (A. Kravtsov & A. Klypin) 4



# Big questions

#### Afterglow of the early universe

Skeleton of dark matter

Cosmic web of galaxies



#### nearly uniform

#### rich structure



# Challenges to modellingNumericalAnalyticalN particles2 fields

computational power

limited sampling

large-scale accuracy

## perturbative fluid

## limited features

small-scale accuracy





#### (Cold) Dark Matter Dynamics Vlasov-Poisson equation (collisionless Boltzmann, long range force)



# **One nice thing**

$$abla^2 V \propto \int f({m x},{m p},t)\,\mathrm{d}{m p}-1$$
linear

7 dimensional, non-linear, integro-differential equation...

simple "cold" initial conditions: flat sheet





# Gravitational collapse

### (Cold) Dark Matter Dynamics Perfect fluid: single stream





#### $f_{\text{fluid}}(\boldsymbol{x}, \boldsymbol{p}) = \rho(\boldsymbol{x})\delta_D(\boldsymbol{p} - m\nabla\phi(\boldsymbol{x}))$





# How do waves come in?

## Cold Dark Matter Particles/Fluids



2 fields: density & velocity

$$ho(\mathbf{x}) =$$
 $rho(\mathbf{x}) = rac{i\hbar}{2} \psi^{\mathbf{x}}$ 

### Wave Dark Matter Waves

## 1 wavefunction: $\psi(\mathbf{x})$ $\psi = \sqrt{\rho} \exp[i\phi/\hbar]$

 $=|\psi(oldsymbol{x})|^2$ 







# Wave dark matter

## Spot the difference

• Same large scale network as CDM

• Wave interference "decorates" the cosmic web



Schive ++ Nature Phys. Lett, `15 astrophysical imprints: Hui, Ostriker, Tremaine & Witten `17, Hui `21







# Wave dark matter





Schive ++ Nature Phys. Lett, `15 astrophysical imprints: Hui, Ostriker, Tremaine & Witten `17, Hui `21





# Wave dark matter

## Why do we care?

- True wavelike dark matter (e.g. axions)
- Rich phenomenology
- Universal features (tool even for CDM)



Schive ++ Nature Phys. Lett, `15 astrophysical imprints: Hui, Ostriker, Tremaine & Witten `17, Hui `21







$$oldsymbol{x} = oldsymbol{q} - a oldsymbol{
abla} arphi_g^{(\mathrm{ini})}$$

Widrow & Kaiser APJ `93 Coles `02, Uhelmann ++ `19



# Simple models

#### Approximate: shoot particles following initial potential

$$\boldsymbol{v}(\boldsymbol{q},a) = -\boldsymbol{\nabla}\varphi_g^{(\mathrm{ini})}(\boldsymbol{q})$$

$$\boldsymbol{x}(\boldsymbol{q},a) = \boldsymbol{q} - a \boldsymbol{\nabla} \varphi_g^{(\mathrm{ini})}(\boldsymbol{q})$$



#### Zel'dovich approximation\*



\*exact in 1D before shell crossing \*(Lagrangian) perturbation theory: ZA + tidal effects

Zel'dovich A&A 1970











# Multi-streaming



animation on wikimedia commons









# Multi-streaming



animation on wikimedia commons







# Multi-streaming



ZA produces multi-streaming, no secondary infall







# Particles to waves





# $\psi(x, a)$



# Particles to waves





#### Initial conditions

$$\psi = \sqrt{\rho} e^{i\phi_v/\hbar} \qquad \text{Fluid variables}$$

#### Uniform density Sinusoid velocity

$$\psi^{(\text{ini})}(q) = \exp\left(\frac{i}{\hbar}\cos(q)\right)$$
$$i\hbar\partial_a\psi = -\frac{\hbar^2}{2}\partial_x^2\psi$$

Toy Model









# Free wave evolution

## **Amplitude**: brightness Phase: colour

## Features

#### • Interference - what is interfering?

- Regularised caustic
  - how bright?
  - how wide?











#### Optics



#### Berry, Nye, Wright `79





#### Optics

#### Interference

#### Wave optics

- What is interfering?
- What are the 'rays'?







# Propagator formalism

#### Solving the wavefunction

#### Useful to write solution in certain form

*initial position* transition amplitude  $\psi(x, a) \sim \int dq K_0(q; x, a) \psi^{(ini)}(q)$ 

•  $\zeta(q; x, a)$  contains the *action* and the *initial conditions* 

 $\psi(x,a) \sim \int \mathrm{d}q \, \exp\left(-\frac{1}{2}\right) \, dq \, \exp\left(-\frac{1}{$ 

$$\phi(q;x,a)\psi^{(\mathrm{ini})}(q)$$

$$\exp\left[\frac{i}{\hbar}\zeta(q;x,a)
ight]$$

$$\left(\frac{i}{\hbar}\left[S_0(q;x,a)+\varphi_g^{(\text{ini})}(q)\right]\right)$$



# Unweaving the wavefunction

$$\psi(x,a) \sim \int \mathrm{d}q \, \exp\left(\frac{i}{\hbar}\zeta(q;x)\right)$$

- $\hbar$  small  $\rightarrow$  integrand oscillatory
- where oscillations slow dominate integral

**Stationary Phase Approximation** 

q where  $\zeta'(q) = 0$  dominate integral

(quantum amplitude dominated by classical path as  $\hbar \rightarrow 0$ )











# Stream wavefunctions













# Non-potential velocity

- Phase jumps correspond to zeros in the density
- $\psi$  encodes information beyond  $|\psi|^2 = 10^{-10}$ a perfect fluid!



#### Get effect of stream averaging without explicit dissection of streams!





 ${\mathcal X}$ 

#### Optics



"Coffee cup caustic"







 ${\mathcal X}$ 

#### Optics



#### "Coffee cup caustic"







 ${\mathcal X}$ 

#### Optics

#### Certain bright patterns seem universal

Can we classify?

What is universal and where?



# Local behaviour





# Universal properties



Gough & Uhlemann 2022



 $|\psi|^2$ 









# Takeaways

Wave DM presents rich phenomenology, decorating the cosmic web

- universal caustic structures (fully classified)
- interference ~ multi-streaming
- oscillations/phase jumps ~ beyond perfect fluid

Wave models of CDM efficiently capture information beyond fluid models

> prospects for analytic modelling and complementing numerics

arXiv: 2206.11918



![](_page_37_Figure_9.jpeg)

![](_page_37_Picture_11.jpeg)

![](_page_37_Picture_18.jpeg)

![](_page_37_Picture_19.jpeg)