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Quasinormal modes

Linear perturbations to spacetimes with horizons exhibit ringdown behaviour,
where the gravitational wave signal is dominated by terms of the form estu(x).
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Quasinormal modes

t

estu(x) • Tests of general relativity.
• Precise asymptotics:

ψ(t, x) ∼ Ψ1es1tw1(x) + Ψ2es2tw2(x) + O(e−Ct)

This was used in the proof of non-linear
stability of Kerr-de Sitter (Hintz and Vasy ’18).
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Regularity quasinormal modes
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Regularity quasinormal modes

Definition
Let t be a time coordinate with hyperbolic level sets and x be coordinates on
t = const. We say s is a quasinormal frequency if there exists u(x) smooth at the
horizon such that

Lsu(x) := e−st(−□g + 2)(estu(x)) = 0

The corresponding solutions u(x) are quasinormal modes.
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Co-modes

For a square matrix A,

A invertible ⇐⇒ A† invertible.

This holds for ‘nice’ operators between infinite-dimensional vector spaces too, so

Ls invertible at s ⇐⇒ L†s invertible at s.

We call solutions v to the dual problem L†sv = 0 co-modes, and these naturally
live in the space dual to quasinormal modes.
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Quasinormal modes in de Sitter

−□dSψ +
2Λ
3 ψ = 0.

• The quasinormal frequencies are −κ,−2κ,−3κ, . . . where κ =
√
Λ/3.

• The modes are polynomials (suitable coordinates).
• The co-modes are concentrated on the cosmological horizon.
• Similar results hold for the wave equation (but not for generic KG masses).
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Zero-damped modes
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Zero-damped modes

• These frequencies determine the decay of perturbations for spacetimes with
asymptotically de Sitter ends.

• Understanding the spectral gap is tied to the strong cosmic censorship
conjecture for spacetimes with positive cosmological constant (Dias et al. ’18,
19’, Cardoso et al. ’18, Destounis ’19, Liu et al. ’19).

• There are heuristic arguments that these frequencies contribute to the
polynomial tails observed for extremal horizons/asymptotically flat ends.
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Zero-damped modes (Kerr)

• Method of matched asymptotics for Teukolsky (Hod ’08, Yang et al. ’13) in
near extremal limit:

s = −κ
(
n+

1
2

)
− imΩ+ O(κ)

this holds for co-rotating modes.
• WKB analysis for Teukolsky (Yang et al. ’13) in eikonal limit l≫ 1.
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Previous work

• Schwarzschild-de Sitter:
• Sá Barreto and Zworski ’97

√
1− 9ΛM2

3
√
3M

(
−
(
k+ 1

2

)
± i

(
l+ 1

2

))
for l≫ 1.

• Hintz and Xie ’22

−(l+ k+ 1)
√

Λ

3 as M→ 0.

• Kerr-de Sitter:
• Dyatlov ’12: similar expression to above in l≫ 1 regime.
• Hintz ’21.
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Potentials supported away from the horizon
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General smooth potentials

Theorem (J. ’22)
Given W smooth up to the horizon, δ > 0, and m ∈ N, take ϵ sufficiently small.
Then there exists a quasinormal frequency s0 of Ls + ϵW such that |s0 +m| < δ.
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Spherically symmetric potentials

Theorem
Let W be a smooth, spherically symmetric potential on de Sitter. Then for ϵ
sufficiently small, there exist quasinormal frequencies sn of Ls + ϵW such that

sn = −n+
∞∑
m=1

Smϵm,

where

Sm =
(−1)m
2πi tr

˛
Γ
zL′zL−1z (WL−1z )mdz.
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The extremal limit

Consider the family of metrics

gκ = −(1− κ2r2)dt2 − 2κrdtdr+ dr2 + r2gS2

and take the limit as κ→ 0.
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The extremal limit

Theorem (J. ’22)
Let V be a smooth function on R3 such that

|x||α|+2∂αV(x) → 0 as |x| → ∞

for each multi-index α. Then the equation

−□gκψ + 2κ2ψ + Vψ = 0

exhibits zero-damped quasinormal frequencies.
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The extremal limit
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A class of static, spherically symmetric metrics

We consider metrics of the form:

g = −fΛ(r)dt2 +
dr2
fΛ(r)

+ r2gS2

where

fΛ(r) = 1+ wΛ(r) +
Λ

3αΛr−
Λ

3 r
2.
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A class of spherically symmetric metrics

Theorem (J. ’22)
Consider the conformal Klein-Gordon equation on the background described
previously:

−□gψ +
R
6ψ = 0.

In the extremal limit Λ → 0, this equation exhibits zero-damped quasinormal
frequencies.
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Reissner-Nordström-de Sitter

H
+ C +

Reissner-Nordström-de Sitter

H̃
+ C̃ +

Transformed spacetime

Perturbations to the metric • 20/22



Reissner-Nordström-de Sitter

Theorem (J. ’22)
Consider the conformal Klein-Gordon equation on a Reissner-Nordström-de
Sitter black hole background:

−□gψ +
R
6ψ = 0.

In the extremal limit where the event and Cauchy horizons coalesce, this
equation exhibits zero-damped quasinormal frequencies.
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Summary

• Zero-damped modes are important for understanding asymptotics of
perturbations for asymptotically de Sitter spacetimes.

• They have been observed in many spacetimes where a horizon becomes
extremal: it is conjectured they are a generic feature.

• It can be proved for a class of static, spherically symmetric spacetimes that
they are present.
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