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Motivation

• pQCD at high energy treats quarks as free particles
due to the property of asymptotic freedom.

• At the energy levels of chemistry quarks only exist in
composite objects due to quark confinement in the
strong force.

• There may be a phase transition separating the
regions described by these dynamics.

• By studying the critical phenomena of QCD in
general we may gain a better understanding of this
behaviour.



Phase Transitions

• The dynamics near the critical point of phase
transitions typically obey the following:

• Divergent characteristic scale resulting in highly
correlated systems across various scales

• Certain quantities,such as specific heat, obey simple
scaling relations according to a small number of
measurable critical exponents.

• Fixed points in pQCD which are non-trivial zeros of
the beta function correspond to phase transitions.



Renormalization

• The renormalization procedure removes divergences
in calculations by mapping measurable physical
quantities to the quantum calculations of that
quantity.

• Regularisation introduces an unphysical momenta,
µ, that the formal parameters, such as the coupling
constant, depend on xi = xi(µ).

• Measurable quantities are written as functions of the
formal parameters, M = M(xi(µ), µ), in such a way
that they are independent of the unphysical scale

d
dl

M =
[ ∂
∂l

+
∑

i

xi(µ)γxi (xj)
∂

∂xi

]
M = 0, (1)

where l = ln(µ2/Λ2) and xiγxi =
∂xi
∂l .



Fixed Points

• For massless pQCD there are two formal parameters
a(µ) = g2/16π2 and α(µ).

• Fixed points describe the position where the running
parameters are stationary, i.e.

β(a∗, α∗) = a∗γa(a∗, α∗) = 0, α∗γα(a∗, α∗) = 0. (2)

• Classification is via the Hessian eigenvalues, ωi :
• Re(ωi) < 0 - IR unstable fixed point,
• Re(ωi) > 0 - IR stable fixed point,
• sign(Re(ω1)) ̸= sign(Re(ω2)) - IR saddle point.

• Note: these parameters are now correlated across
various scales.



Anomalous Dimension

• We can consider the running of other dynamical
operators

d
dl

O =
[
γO(a, α) + β(a, α)

∂

∂a
+ αγα(a, α)

∂

∂α

]
O (3)

where γO = ∂ ln ZO
∂l and ZO is the renormalization

constant of O.
• At a fixed point this solves to O = A(µ2/Λ2)γO .
• γO behaves as a critical exponent and should in

principle be measurable on the lattice.
• γO at the fixed point is also the quantum correction

to the classical dimension of O. If it is large enough it
can change an irrelevant operator to relevant.



Gauge Fixing

• Following the path integral formalism in gauge
theories we gauge fix to avoid double counting of
physically identical states.

• Physical dynamics should not depend on the choice
of gauge fixing - the parameter α(µ) is used to
continuously deform the gauge orbit.

• This is only true up to order in truncation - a large
gauge parameter could result in a coupling constant
that is too large for perturbation theory.

• The gauge orbit can also be changed by choosing
different gauge fixing terms.



Linear Covariant Gauge

• Gauge fixing terms can be covariant or
non-covariant, we focus on covariant terms because
of their calculational simplicity.

• A typical choice of gauge fixing term is the linear
covariant gauge LLCG

gf = − 1
2α(∂

µAa
µ)

2 − c̄a(∂µDµc)a

where the c fields are unphysical ghost fields
included to ensure unitarity in calculations.

• α = 0 is the Landau gauge - gauge parameter has
stationary running.

• α = 1 is the Feynman gauge - simplifies calculations
in gauge independent schemes.



Curci-Ferrari Gauge

• There are also non-linear covariant gauges, we
consider the Curci-Ferrari (CF) and Maximal Abelain
Gauges (MAG) - Lagrangians found in [8].

LCF
gf = − 1

2α
(∂µAa

µ)
2 − c̄a(∂µDµc)a

−g
2

f abc∂µAa
µ c̄bcc +

αg2

2
f abcd c̄acbc̄ccd (4)

• A BRST invariant gauge fixing term originally used
for the Curci-Ferrari model.

• The model includes a gluon mass term and chooses
a gauge fixing such that the Lagrangian is BRST
invariant.



Maximal Abelian Gauge

LMAG
gf = −

1

2α

(
∂
µAa
µ

)2
−

1

2ᾱ

(
∂
µAi
µ

)2
+ c̄A

∂
µ
∂µcA

+ g
[

f abCAa
µ c̄C

∂
µcb −

1

α
f abk

∂
µAa
µAb
νAk ν − f abk

∂
µAa
µcb c̄k −

1

2
f abc

∂
µAa
µ c̄bcc

−2f abkAk
µ c̄a

∂
µ c̄b − f abk

∂
µAk
µ c̄bcc

]
+ g2

[
f acbd
d Aa

µAb µ c̄ccd −
1

2α
f akbl
o Aa

µAb µAk
νAl ν

+ f adcj
o Aa

µAj µ c̄ccd

−
1

2
f ajcd
o Aa

µAj µ c̄ccd
+ f ajcl

o Aa
µAj µ c̄ccl

+ f alcj
o Aa

µAj µ c̄ccl

−f cjdi
o Ai

µAj µ c̄ccd −
α

4
f abcd
d c̄a c̄bcccd −

α

8
f abcd
o c̄a c̄bcccd

+
α

8
f acbd
o c̄a c̄bcccd

+
α

4
f albc c̄a c̄bcccl −

α

4
f albc
o c̄a c̄bcccl

+
α

2
f akbl
o c̄a c̄bckcl

]
(5)

• 1 ≤ A ≤ NA, 1 ≤ a ≤ No
A, 1 ≤ i ≤ Nd

A , No
A + Nd

A = NA
• Gauge fixes the diagonal and off-diagonal vector

potential terms differently.
• In the limit where the number of Nd

A → 0,
components goes to zero, LMAG

gf → LCF
gf .



Dynamics of Interest

• Typically fixed point studies focus on linear covariant
gauge-fixing and the Landau gauge α = 0 where αγα
is zero by definition.

• Due to its calculational simplicity the
renormalization group functions are typically known
in MS to a given order first, so most investigations
will centre on this scheme.

• Measurables in this scheme are gauge parameter
independent so only the coupling constant acts as a
formal parameter.

• This is not generally true - difficult to suggest
universal truths about the structure of the
underlying theory from a single scheme with such
properties.



Dynamics of Interest

• We will utilise the expected renormalization group
and gauge invariance of physical dynamics in order
to search for dynamics of interest.

• By comparing fixed points in a variety of different
schemes (MS, RI′, mMOM and MOMi) we can search
for consistent behaviour which suggests these
features are physical.

• Considering fixed points with different gauge fixing
terms can also inform our dynamics of interest.

• Fixed points have also been considered in a variety of
gauge groups (the exceptional groups, SU(2), SU(3),
SU(5), SO(3), SO(10), Sp(4)) for completeness.



Fixed Point Stability

5L mmom in su3 Stability Tables

Nf a∞ α∞ ω1 ω2 Infrared Stability
10 0.039122 0.000000 0.391910 −0.178382 Saddle

0.103319 1.204261 5.029211 + 2.081153i ω∗
1 Stable

0.039060 −2.975110 0.348737 0.178474 Stable
11 0.034349 0.000000 0.239411 −0.158660 Saddle

0.096774 1.021248 2.047620 + 3.312087i ω∗
1 Stable

0.034890 −3.025124 0.223755 0.153415 Stable
12 0.028976 0.000000 0.136151 −0.135918 Saddle

0.092477 0.737912 0.042881 + 2.607927i ω∗
1 Stable

0.029873 −3.093637 0.119065 0.140522 Stable
13 0.022746 0.000000 0.071625 −0.107263 Saddle

0.103541 0.000000 −5.382778 0.691961 Saddle
0.088935 0.273310 −2.008768 −0.682213 Unstable
0.023575 −3.130751 0.068903 0.101307 Stable

14 0.016067 0.000000 0.032997 −0.075242 Saddle
0.073378 0.000000 −2.190706 −0.257694 Unstable
0.083341 −0.745879 −3.737705 0.245837 Saddle
0.016555 −3.118834 0.032707 0.070665 Stable

15 0.009476 0.000000 0.010888 −0.043759 Saddle
0.062696 0.000000 −1.652417 −0.333851 Unstable
0.009660 −3.078166 0.010878 0.041996 Stable
0.057124 −3.612651 −0.513955 0.630062 Saddle

16 0.003122 0.000000 0.001098 −0.014178 Saddle
0.057710 0.000000 −1.551958 −0.359307 Unstable
0.003143 −3.027377 0.001098 0.013982 Stable
0.050584 −3.866561 −0.515577 0.687634 Saddle

• α ≈ −3 gauge was noted in this context by Ryttov [7], and has also been considered in other
contexts [1] [2] [6].



Stability eigenvalues

• Observation of fixed points in a variety of different
schemes and with different gauge fixing terms
displays large conformity of behaviour.

• The Bank-Zaks fixed point - the nearest fixed point
to the origin in the Landau gauge α = 0 - is an
infra-red saddle point which is stable along the
coupling constant axis

• Infra-red stable fixed point found at a ≈ aBZ , α ≈ −3
(or α ≈ −5 for CF and α ≈ −6 MAG).

• For Nf = 16, ω1 ≈ 0.0010 and |ω2| ≈ 0.014



mMOM Flow Plots
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Figure 1: Flow plots for the running of the coupling constant against gauge
parameter in the Linear Covariant Gauge for mMOM at Nf = 12 at four- and
five-loop. The points plotted are the locations of the fixed points with squares
being the BZ FP, cross being infra-red stable, star being infra-red unstable
and diamond being a saddle.



MOMq Flow Plots
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Figure 2: Flow plots for the running of the coupling constant against gauge
parameter in the Linear Covariant Gauge for MOMq at Nf = 16 at two- and
three-loop. The points plotted are the locations of the fixed points with
squares being the BZ FP, cross being infra-red stable, star being infra-red
unstable and diamond being a saddle.



MOMg Flow Plots
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Figure 3: Flow plots for the running of the coupling constant against gauge
parameter in the Linear Covariant Gauge for MOMg at Nf = 16 at two- and
three-loop. The points plotted are the locations of the fixed points with
squares being the BZ FP, cross being infra-red stable, star being infra-red
unstable and diamond being a saddle.



MOMc Flow Plots
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Figure 4: Flow plots for the running of the coupling constant against gauge
parameter in the Linear Covariant Gauge for MOMc at Nf = 16 at two- and
three-loop. The points plotted are the locations of the fixed points with
squares being the BZ FP, cross being infra-red stable, star being infra-red
unstable and diamond being a saddle.



Conformal Window Flow Plots
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Figure 5: Flow plots for the running of the coupling constant against gauge
parameter in the Linear Covariant Gauge for MOMq at Nf = 12 and Nf = 16 at
three loop. The points plotted are the locations of the fixed points with
squares being the BZ FP, cross being infra-red stable, star being infra-red
unstable and diamond being a saddle.



Known Results

Agreement has been found by comparison of these results to
two loop with Shirkov and Tarasov [6].
Below are given recreations of the result of that reference. x = α, y = a.

MOMc

Nf Type α2∞ a2∞
3 Stable −7.228280067 0.02095059410
4 Stable −7.007675678 0.02217480568
5 Stable −6.775661548 0.02352030456
6 Stable −6.529585892 0.02499779149



Quark Mass Anomalous Dimension

• We consider applying the renormalization procedure
to the quark-bilinear operator which would describe
the massive term in the Lagrangian

ψ̄0ψ0 → Zψ̄ψψ̄ψ =
Zψ̄ψ
Zψ

ψ̄0ψ0 = Zm ψ̄0ψ0 (6)

• Which can be found by renormalizing the Green’s
function G =< ψ(p)[ψ̄ψ](0)ψ̄(−p) >.

• This quantity has been evaluated on the lattice for an
infrared conformal SU(3) system with Nf = 12 [10]
with values of γm = 0.235(15).
c.f. with perturbative four loop result found at in MS
scheme γm = 0.253 [11]



Fixed Point Anomalous Dimension

5LOUT mMOM LCG in SU(3) F

Nf Type γA γc γψ ρm
10 BZ 0.178382 −0.089191 −0.005186 0.503784

(IRS) 0 0.414674 0.449910 −1.079122
IRS 0 −0.151697 −0.148790 0.450991

11 BZ 0.158660 −0.079330 −0.003476 0.395544
(IRS) 0 0.325593 0.276743 −1.666897
IRS 0 −0.139217 −0.135229 0.373631

12 BZ 0.135918 −0.067959 −0.001749 0.309177
(IRS) 0 0.227143 0.131599 −2.007590
IRS 0 −0.123246 −0.117907 0.302656

13 BZ 0.107263 −0.053632 −0.000633 0.228539
IRS 0 −0.100243 −0.094248 0.227759

14 BZ 0.075242 −0.037621 −0.000158 0.152168
IRS 0 −0.071998 −0.066518 0.152228

15 BZ 0.043759 −0.021879 −0.000019 0.084206
IRS 0 −0.042706 −0.038808 0.084220

16 BZ 0.014178 −0.007089 0.000001 0.025902
IRS 0 −0.014073 −0.012597 0.025902

• MS result at 5L for Nf = 16 gives ρm = 0.025903 at fixed point [9].



Scheme Comparison

Figure 6: Plot of the values of ρm (related to the quark mass anomalous
dimension) for QCD in SU(3) at the three loop level in the Linear Covariant
Gauge found in different schemes. Note the convergence of the values at the
upper end of the conformal window. This graph is not exhaustive of all fixed
points.



Loop order comparison

Figure 7: Plot of the values of ρm (related to the quark mass anomalous
dimension) for QCD in SU(3) in the mMOM scheme in the Linear Covariant
Gauge at different loop levels. Note the convergence of the values at the upper
end of the conformal window. This graph is not exhaustive of all fixed points.



Gauge Fixing Comparison

Figure 8: Plot of the values of ρm (related to the quark mass anomalous
dimension) for QCD in SU(3) in the MOMg scheme at the three loop level with
different gauge fixing terms. Note the convergence of the values at the upper
end of the conformal window. This graph is not exhaustive of all fixed points.



Thank you for listening

What have we done:
• Found gauge dependent fixed points in the MS, RI′

mMOM and MOMi schemes.
• Considered the linear covariant, Curci-Ferrari and

maximal Abelian gauges.
• Found the fixed points for different groups.
• Calculated the following anomalous dimensions at

the fixed points: ρm , γc, γψ, γα and γA, as well as the
Hessian eigenvalues ω1 and ω2.

• Found the flow plots for each LCG scheme.

• Considered 0 ≤ Nf ≤ ⌊N∗
f ⌋ where β

N∗
f

0 = 0.
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