

Cornering the Two Higgs Doublet Model

Oliver Atkinson o.atkinson.1@research.gla.ac.uk YTF, December 2022 Based on arxiv:2107.05650, 2202.08807 and 2207.02789

Outline

The Two Higgs Doublet Model (2HDM) as a solution for SM shortcomings
 2HDM Background

- >Methodology and packages
- Direct and indirect constraints

Combining results and looking forward

Standard Model vs Reality

>The SM is great! Except when it's not

> Tensions, anomalies and unexplained phenomena

$$\succ R_{K^{(*)}}$$
, $R(D^{(*)})$, a_{μ} , m_{W} , etc.

Dark matter

Neutrino masses

Sakharov criteria for electroweak baryogenesis

- Baryon number violation
- ≻ CP Violation
- Strong first order electroweak phase transition

Motivating the 2HDM

>Capable of solving problems in the SM

- >New Higgs bosons give new contributions to observable processes
- Different electroweak symmetry breaking pattern possible

	Standard Model	Two Higgs Doublet Model
Baryon Number Violation	Sphalerons	Sphalerons
Parity and Charge-Parity Violation	Weak interactions	Additional violations possible
First Order Phase Transition	Higgs is too heavy	Yes

2HDM Theory

- > The Standard Model has a single Higgs doublet φ > $\mathcal{L}_m = -Y_{ij}^d \bar{Q}_L^i \phi d_R^j - Y_{ij}^u \bar{Q}_L^i \tilde{\phi} u_R^j + h.c.$
- >Symmetry breaking gives rise to three massive vector bosons >An additional massive scalar is produced – the Higgs boson >In the 2HDM, there is a second doublet which also acquires a VEV >Now 5 massive (pseudo)scalar bosons: h^0 , H^0 , A^0 , H^{\pm} >Take h^0 to be the observed 125 GeV scalar > h^0 and H^0 undergo mixing with angle α
- > Define $\tan\beta = v_2/v_1$

2HDM Theory

≻7 model parameters in the mass basis:

> 4 masses, the softly \mathbb{Z}_2 breaking term m_{12}^2 , $\tan\beta$ and $\cos(\beta - \alpha)$

> Focus on the masses and mixing angles for observable consequences

>4 types of flavour conserving 2HDM, based on doublet-fermion couplings:

Model	u_R	d_R	e_R
Type I	2	2	2
Type II	2	1	1
Lepton specific (X)	2	2	1
Flipped (Y)	2	1	2

Model Couplings

$$-\mathcal{L}_{\text{Yukawa}}^{\text{2HDM}} = \sum_{f=u,d,\ell} \frac{m_f}{v} \left(\xi_h^f \bar{f} fh + \xi_H^f \bar{f} fH - i\xi_A^f \bar{f} \gamma_5 fA \right)$$
$$- \left[\frac{\sqrt{2}V_{ud}}{v} \bar{u} \left(m_d \xi_A^d P_R - m_u \xi_A^u P_L \right) dH^+ \right.$$
$$+ \frac{\sqrt{2}}{v} m_\ell \xi_A^l (\bar{\nu} P_R \ell) H^+ + \text{h.c.} \right], \qquad (2)$$

Model	Ι	II	Х	Y	
ξ_h^u	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos lpha / \sin eta$	$\cos lpha / \sin eta$	
ξ^d_h	$\cos \alpha / \sin \beta$	$-\sinlpha/\coseta$	$\cos lpha / \sin eta$	$-\sinlpha/\coseta$	
ξ_h^l	$\cos lpha / \sin eta$	$-\sinlpha/\coseta$	$-\sinlpha/\coseta$	$\cos lpha / \sin eta$	
ξ^u_H	$ \sin lpha / \sin eta $	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	
ξ^d_H	$ \sin lpha / \sin eta $	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	
ξ_{H}^{l}	$ \sin lpha / \sin eta $	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	
ξ^u_A	\coteta	\coteta	\coteta	\coteta	
ξ^d_A	\coteta	- aneta	\coteta	- aneta	
ξ^l_A	$\cot eta$	- aneta	- aneta	\coteta	

Methodology

- >Theoretical considerations
- >SM Higgs signal strengths
- >2HDecay and HiggsBounds for direct collider searches
 - > Key $H^+ \rightarrow tb$ cross section x branching ratio through MadEvent
 - > Scan 50k random points across the parameter space
- >Extrapolate LHC results to HL-LHC performance of 13 TeV, 3/ab
 - SM Higgs searches matching SM predictions
 - > 7-8 TeV search cross sections boosted using a MadEvent interpolation
- Flavio for 240 flavour observables
 - > Calculate the Wilson Coefficients from 2HDM contributions and perform a global fit

The 2HDecay homepage is at https://github.com/marcel-krause/2HDECAY, with a manual at arxiv:1810.00768 The HiggsBounds homepage is at https://gitlab.com/higgsbounds/higgsbounds, with a manual at arxiv:2006.06007 The Flavio homepage is at https://flav-io.github.io, with a manual at arxiv:1810.08132

Theoretical Constraints

 $> 2 \text{HDM potential:} V(\Phi_1, \Phi_2) = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right].$

Enforce vacuum stability and unitarity

- > For perturbativity we check limits of 4 and 4π , with minimal difference in the scan
- > Perturbative limit of 4π in the type 2 charged Higgs couplings is used to inform the parameter space limits
- We perform Monte Carlo scans with 10⁸ points in the lambda basis and convert results to the mass basis

Theoretical Constraints

- Only one of the mass plots shown the other combinations look identical
- >Type independent results
- Masses must be very nearly degenerate
- More freedom at lower masses
- $>\cos(\beta \alpha)$ constrained to be small at high $m_{H^{\pm}}$
- >No constraints found on $tan\beta$
- \succ Minor differences between 4 and 4 π
- >Degeneracy a result we will return to often

Electroweak Precision Observables

- \succ Electroweak precision observables: S, T, U
- ≻By construction these are zero in the SM
- >Involved calculation in the 2HDM
- $\succ \operatorname{New}$ physics has no effect on U so we set it to zero
- > Results show that $m_{H^{\pm}} = m_{H^0}$ or $m_{H^{\pm}} = m_{A^0}$ preferred, with full degeneracy allowed
- >These results are also type independent
- Included in the global fit

Higgs Sector – Signal Strengths

> Focus on the measured properties of h^0

> The couplings differ in the 2HDM vs the SM, by factors:

$$\kappa_V = \sin (\beta - \alpha),$$

 $\kappa_u = \sin (\beta - \alpha) + \cot \beta \cos (\beta - \alpha)$
 $\kappa_{d,\ell} = \sin (\beta - \alpha) - \tan \beta \cos (\beta - \alpha)$

> $\cos(\beta - \alpha) = 0$ recovers exactly the SM couplings – the alignment limit > This is part of the reason we choose $\cos(\beta - \alpha)$ as a model parameter over α > In the type 2 model a wrong sign limit can be achieved; $\kappa_u = 1$, $\kappa_V = 1$, $\kappa_{d,\ell} = -1$ > We use the Higgs signal strengths as the observables here, defined as:

$$\mu_i^f = rac{(\sigma_i \cdot \mathcal{B}_f)_{\text{Exp.}}}{(\sigma_i \cdot \mathcal{B}_f)_{\text{SM}}}$$

> 32 channels from CMS and ATLAS, with correlation matrices where appropriate
 > All in these are in good agreement with the SM, lying within 2σ of 1

Higgs Sector – Signal Strengths

 $\widetilde{\sigma}$

 $\cos(\beta$ -

- > Calculate the κ_i and use in analytic calculations
- > Fairly unconstrained in T1, except at low $an\!\beta$
- > $\cos(\beta \alpha)$ must be small in T2: $|\cos(\beta - \alpha)| \le 0.05$
- ightarrow Away from $an\!eta \approx$ 1, even smaller
- >Alignment limit closely followed
- > In good agreement with literature
- \succ The wrong sign limit is excluded up to 2.7 σ

>A simple and constructive example of the project process >Extra contributions when the decays are mediated by H^{\pm} >Effective Hamiltonian: $\mathcal{H}_{H^+}^{\text{eff}} = -\frac{4G_F}{\sqrt{2}}V_{ud}(C_{S-P}\mathcal{O}_{S-P} + C_{S+P}\mathcal{O}_{S+P}) + \text{h.c.}$ >Operators: $\mathcal{O}_{S-P} = (\bar{u}P_L d)(\ell P_L \nu_\ell)$, $\mathcal{O}_{S+P} = (\bar{u}P_R d)(\ell P_L \nu_\ell)$ >Expressions: $C_{S-P} = \frac{m_u m_\ell}{m_{H^+}^2}$, $C_{S+P} = \frac{m_d m_\ell \tan^2 \beta}{m_{H^+}^2}$

Flavour – Leptonic Decays

>10 tree level leptonic decay BRs >24 tree level semi-leptonic decay BRs >First inclusion of B_s → $D_s^{(*)}\mu\bar{\nu}_{\mu}$ >Perform the fit in flavio >Only a small exclusion region

Collider Searches

> LEP searches rule out the lowest masses

 $> H^+ \rightarrow tb$ provides exclusion zones above m_t for low $tan\beta$

 $> H^0 \rightarrow \tau^+ \tau^-$ does so for large tan β in Type II; Type I has minimal couplings here

Collider and Flavour Complementarity

> Flavour results particularly helpful for low $tan\beta$

- Collider searches provide low mass cut off in Type I
- > In Type II, flavour gives a lower mass bound of 860 GeV, mainly from $b \rightarrow s \gamma$
- > The extrapolation makes collider data competitive

Collider and Flavour Complementarity

> Flavour results still more potent for low $tan\beta$

> Direct searches eat into more of the 1 σ region from flavour in both cases

 \succ Entire 1 σ region excluded in current collider data for Type Y, and very nearly all the 2 σ region in the extrapolation

Electroweak Phase Transition

- >A strong first order EWPT (SFOEWPT) is required
- > We use the BSMPT package to calculate the strength of the EWPT
- > In BSMPT, calculations are done in the lambda basis, so we convert
- > The strength of the EWPT is characterised by $\xi_c = \omega_c/T_c$
- \succ We test individual benchmark points for $\xi_c > 1$
- \succ For a SFOEWPT the new Higgs masses cannot be larger than around 860 GeV \succ This is at the 2σ limit from the global fit
- > Best fit points do not allow for a SFOEWPT by some distance
- > Allowed points require at least one $\lambda_i > 4$, conflicting with perturbativity
- > These results are consistent with other studies of the 2HDM

TypeIEWPT

ton B	Mass Basis (GeV)		Lambda Basis		m_{12}^2	ω_c	T_c	ć		
	m_{H^+}	m_{H^0}	m_{A^0}	λ_3	λ_4	λ_5	$({ m GeV}^2)$	(GeV)	(GeV)	Sc
11.4	50000	50000	50000	0.26	0	0	$3.1 imes 10^7$	0.58	164	0.004
80	1750	1750	1750	0.26	0	0	$3.8 imes 10^4$	23	162	0.14
50	1810	1750	1760	7.3	-6.5	-0.6	$6.1 imes 10^4$	26	174	0.15
10	1810	1750	1760	7.3	-6.5	-0.6	$3.0 imes 10^5$	26	174	0.15
150	1810	1750	1760	7.3	-6.5	-0.6	$2.0 imes 10^4$	26	174	0.15
35	1020	960	970	4.2	-3.6	-0.3	$2.6 imes 10^4$	24	169	0.14
80	860	710	860	8.0	-3.9	-3.9	$6.3 imes10^3$	142	174	0.82
80	860	690	860	9.0	-4.3	-4.3	$6.0 imes 10^3$	177	174	1.02
80	680	470	680	8.2	-4.0	-4.0	$2.8 imes 10^3$	211	147	1.43
80	570	320	570	7.6	-3.7	-3.7	$1.3 imes 10^3$	226	125	1.81
80	490	250	490	6.1	-2.9	-2.9	$7.8 imes 10^2$	207	126	1.65
80	490	490	490	0.26	0	0	$3.0 imes 10^3$	23	161	0.14

MUonE

Also expect interactions in the muon-electron scatting to be tested at the upcoming MUonE experiment

- Very little sensitivity to 2HDM of any type, apart from some extreme scenarios
- Good news for the experiment, which is not aiming for new physics discovery

Conclusions

- Thorough analysis of the 2HDM, taking into account 275 indirect channels and a wealth of collider data, including an extrapolation to LHC potential
- >Good interplay of the different sectors, particularly in the extrapolation
- >We can rule out large amounts of the parameter space, exceeding bounds from previous studies
- >Additionally, we can consider a SFOEWPT and a_{μ}
- >A series of comprehensive studies of the 2HDM of all types, going further than any previous studies and setting new bounds

Questions

Backup Slides

Flavour – Neutral B Meson Mixing

- \succ Mass difference in eigenstates of B_s and B_d
- ➢ Six operators to consider at LO in QCD
- Theory uncertainties from non-perturbative matrix elements in the operators
- Averages used based in HQET sum rules and lattice simulations
- Perturbative SM corrections implemented to NLO in QCD

b

u, c, t

 \bar{B}^0_a

Flavour – Loop Level $b \rightarrow s, d$ Transitions

> Flavour changing neutral currents $b \to q \ell^+ \ell^- (q = s, d), b \to s \gamma$ > We split these up into a few areas, following conventions

 $\succ {\rm Many}$ observables, particularly in semi-leptonic $b \to q \, \ell^+ \ell^-$

>Some deviations from the SM, up to 3.1σ

Flavour – $b \rightarrow s\gamma$

- > Historically, a key constraint for enforcing a lower mass limit on H^{\pm}
- >SM value calculated at NNLO in QCD: $\mathcal{B}^{SM}(\bar{B} \to X_s \gamma) |_{E_{\gamma} > 1.6 \text{ GeV}} = (3.40 \pm 0.17) \times 10^{-4}$
- >Our 2HDM contributions are at NLO >We find $m_{H^+} \gtrsim 790 (1510) \text{ GeV}$ at $2\sigma (1\sigma)$

Flavour – Leptonic $B_{s,d} \rightarrow \mu^+ \mu^-$ Decays

- Fully general expressions for the WCs − no large tanβ limit
- >We now need the other model parameters
- Two approaches degeneracy or best fit point fixing
- $\succ \text{Lower}$ mass bound of 300 GeV at 2σ
- $\succ {\rm Strong}\ {\rm correlation}\ {\rm of}\ m_{H^\pm}\ {\rm and}\ {\rm tan}\beta$

Flavour – Semi-leptonic $b \rightarrow s\ell^+\ell^-$ Transitions

> Ignore for now the LFU ratios $R_{K^{(*)}}$

- >192 total observables, including binned branching ratios, angular distributions, asymmetries
- ➤There are some anomalies here

>We fix to the best fit point in this plot

Flavour – Anomalies in Lepton Flavour Universalities

- Can we resolve these anomalies in the 2HDM? In short, no
- Negative contributions in the 2HDM and move further from the measured values
- >Large allowed region for R(D) as it is only 1.2 σ from the SM, compared to 2.8 σ for $R(D^*)$
- > R(D) and $R(D^*)$ cannot be consistently resolved in this 2HDM parameter space, up to 3.5 σ , vs 3.2 σ in the SM

Included in the global fit

Flavour – Anomalies in Lepton Flavour Universalities

- > We fix the parameters to the best fit values
- $\succ {\rm Allowed} \ {\rm region} \ {\rm only} \ {\rm at} \ {\rm very} \ {\rm small} \ m_{H^\pm} \ {\rm and} \ {\rm very} \ {\rm large} \ {\rm tan} \beta$
- This is a non-physical region
- $\succ {\rm Additionally,}$ the WC expressions assume heavier m_{H^\pm}
- > Combined, the $R_{K^{(*)}}$ give a 4.2 σ disagreement with the fit to all observables
- > We take two approaches fitting with and without the $R_{K^{(*)}}$

Global Fit

- A comprehensive 275 observable fit, including EWPOs, Higgs signals and the flavour observables
- > We perform searches for the best fit points in various scenarios
- > We find at 1σ (2σ):

 $\max\{|\cos(\beta - \alpha)|\} \le 0.02 \, (0.04)$

 $m_{H^\pm} \ge 1.26 \; (0.86) \; {\rm TeV}$

> The alignment limit is highly preferred

$$ho\,m_{H^\pm}pprox m_{H^0}pprox m_{A^0}pprox 2.3$$
 TeV, $\, an\!etapprox 4$

- > Some variation between scenarios, with generally consistent results
- $ightarrow b
 ightarrow s \ell^+ \ell^-$ is an exception, preferring masses around $700~{\rm GeV}$
- > The *p*-values are 1.5% and 6.6%, including and excluding the $R_{K^{(*)}}$
- > Nevertheless, 2HDM outperforms the SM, with pulls of 2.3 σ and 1.8 σ respectively

Global Fit

Anomalous Magnetic Moment of the Muon, a_{μ}

- ➤ One of the largest deviations from the SM, recently reported at 4.2σ
- We calculate two loop contributions of Bar-Zee diagrams, which depend on all model parameters
- We fix to the favored scenario of degeneracy and the alignment limit
- > Flavio framework used to perform fits

 Z, γ

 H^0 ,

➤ The only allowed regions are at non-perturbative values of tanβ

 H^{\pm}

Anomalous Magnetic Moment of the Muon, a_{μ}

- A recent lattice QCD calculation by the BMW collaboration puts the disagreement with the SM at only 1.6σ
- Using this prediction for the SM value, we find that most of the parameter space is still allowed

Summary of Results

Degenerate masses and alignment limit

≻Type II:

- \succ 2 σ limits of $\cos(\beta-\alpha)\leqslant 0.05,\,m_{H^\pm}\geqslant 860~{\rm GeV}$
- > Best fit points at $m_{H^{\pm}} \approx m_{H^0} \approx m_{A^0}^2 \approx 2.3$ TeV, $\tan\beta \approx 4$, $\cos(\beta \alpha) \approx 0$

≻Type I:

> No mass limits from indirect searches, but a limit at around 100 GeV from direct searches > Best fit points at $m_{H^{\pm}} \approx m_{H^0} \approx m_{A^0} \approx 5.8$ TeV, $\tan\beta \approx 10$, $\cos(\beta - \alpha) \approx 0$

Anomalies cannot be consistently resolved in either model
 SFOEWPT requires masses below 1 TeV – possible in Type I but not Type II
 Overall performance is comparable with the SM