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Primordial Black Holes (PBHs)

May form from collapse of overdense regions in the early Universe
Zel'dovich & Novikov (1967); Hawking (1971)

Cold dark matter candidate:
* Black holes evaporate: PBHs with Mpgy = 101° g have a lifetime longer than age of
Universe

* Form before nucleosynthesis
=> non-baryonic

Formation:
* Most commonly studied model: overdensities seeded by inflation



Microlensing

Temporary brightening of star when a compact object  17.2
passes close to line of sight o
. . . 1/2 -
Microlensing event duration < Mg, 1820
— Long-duration surveys probe larger PBH masses !
Unclustered PBHSs: o _
* Number of events Poisson-distributed with mean Ny, 20 JD —2450000 700

Light curve from candidate microlensing event
Tisserand et al. (2007)



Microlensing constraints on PBHSs
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produced using PBHbounds
https://github.com/bradkav/PBHbounds
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; Claims that PBH clustering removes microlensing

constraints for Mpgy ~ 1 — 10 M,
Garcia-Bellido & Clesse (2018); Calcino et al. (2018)
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PBH clustering

Most commonly studied

PBH formation model: . ..
e PBHs not formed in o« . : °*® o o ¢ )
clusters (Gaussian R
curvature perturbation) o o . : .
* Poisson fluctuations ,.- ¢« e e
e If PBHs make up a S 2 .8
significant fraction of DM, . e ®
form clusters shortly after ¢ o, * : . .
matter-radiation equality . e o TP
Open problem: oo ®
* Modelling PBH cluster ,
evolution to present Initial PBH distribution PRH distribution at z=99 (all DM in PRHs)

Inman & Ali-Haimoud (201 9)



PBH clustering

Most commonly studied
PBH formation model:

* PBHs not formed in
clusters (Gaussian
curvature perturbation)

e Poisson fluctuations

* |f PBHs make up a
significant fraction of DM,
form clusters shortly after
matter-radiation equality

Open problem:

* Modelling PBH cluster
evolution to present

log P(k) (Mpc® h-3)
o

0,=1-0,=0.3
63=0.75, h=0.72
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Primordial matter power spectrum
Afshordi, MacDonald & Spergel (2003)

PBH distribution at z=99 (all DM in PBHSs)
Inman & Ali-Haimoud (201 9)



PBH clustering

N, : Number of PBHs per cluster 1072 F 2 =999
. n Z = 99
e More massive PBH clusters are rarer 5 ) L
@ 10~ —
* Light clusters evaporate Jedamzik (2020) 3
hS)
= NC] ~103 3 107"
2
= 1078 Evaporated
Assume:
, —10 e NS
« All PBHs in PBH clusters TiL 10! 102 107 107

. Ne
* All clusters contain N, PBHs 1

Fraction of PBH clusters containing N PBHs

iy



Compact and Diffuse clusters

Compact Diffuse

RE,cl > Rcl RE,cl K Rcl

Entire PBH cluster acts as a single lens Individual PBHs act as separate lenses



Compact and Diffuse clusters

Compact Diffuse
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Entire PBH cluster acts as a single lens Individual PBHs act as separate lenses

Magnification




PBH clustering: compact or diffuse?

Jedamzik (2020) derived cluster properties from the spherical top-hat collapse model:

Cluster radius:

" 1/3
Ry ~ 0.011 N>/° ( PBH) pc ~ 3.5 pc
Mo

Einstein radius of cluster: N, =103

MPBH
Mg

1/2
Rg o = 2 X 10—5( ) NyY2 pc~6x107*pc

RE,cl < Rcl

—> PBH clusters are diffuse (true for the other Mpgy and N, values considered)



Probability distribution of number of events

(Mpgy = Mg)
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Probability distribution of number of events

(MPBH: 1000M®)
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Conclusions

Most commonly-studied PBH formation mechanism
* Diffuse PBH clusters

* Clusters contain too few PBHSs to significantly change microlensing
constraints

* Caveat: assume Gaussian curvature perturbation

To change constraints more significantly requires very compact, or very massive,
PBH clusters



Constraints on PBHs
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Differential event rate ool
0.4+
Rate of microlensing events of duration t: Typical realisations 0.2}
deficit of short- = 0.0 | ! ! .
f=2 Ry oy [V, duration events 06k
Rg ppy : Einstein radius of PBH £ oab
v, : Transverse velocity of PBH R
= 0.2 —/
L';O
Rg pgy is small at small line of sight Y DZA R =
distances, therefore t is typically small. al
Rare realisations:
excess of short = 2
Black line: unclustered duration events (L
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Explanation of shape of probability distribution

Peak at low numbers
of events

From common
realisations with
deficit of short-

duration events
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Extended mass functions
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E.g. log-normal mass function DMy — LB exp (_lﬂg (M/Mc))
Green (2016), Kannike et al. (2017) | 2moM 207
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Plots from Carr et al.




