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Overview

1. What is massive gravity and why you might care about it

2. The Gauge is Gone: dynamical massive gravity

3. The numerics are weird, but we think we know why

4. What the future might hold
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Massive gravity 101
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Unique stable mass term Breaks gauge invariance!

ℒ𝐺𝑅 = −
1

4
ℎ𝜇𝜈
𝑇 ℰ𝜇𝜈

𝛼𝛽
ℎ𝛼𝛽

ℒ𝑀𝐺 = ℒ𝐺𝑅 −
1

8
𝑚2(ℎ𝜇𝜈
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Main changes: weaker on large scales, 5 dofs

(see 1401.4173)



Problem I
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vDVZ discontinuity!

Where 𝜒𝜇 = 𝜕𝜌ℎ𝜌𝜇 −
1

2
𝜕𝜇ℎ



Solution I
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ℎ = −
2

3𝑚2
𝑇

This blows up in the small mass limit. Hence, we need to account for non-linearities!



Problem II
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𝐺𝜇𝜈 +𝑚2𝑀𝜇𝜈 = 𝑇𝜇𝜈

Suppose non-linearly we have

This gives us 4 constraints

∇𝜇𝑀𝜇𝜈 = 0

For a total of 6 dofs. But we’re only meant to have 5! The 6th is the 
Boulware-Deser ghost



Solution II
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ℒ𝑑𝑅𝐺𝑇 =
𝑚2

4
−𝑔

𝑛=0

4

𝛽𝑛ℒ𝑛[𝐸]

𝐸 ≔ 𝑔−1𝑓

To avoid the ghost, we must use the dRGT mass term:

Symmetric polynomials in the eigenvalues.
Includes a cosmological constant and 
a non-dynamical term for 𝑛 = 4

Fixed reference metric
(you need to contract 𝑔 with something)



EOM
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𝑚2 = 𝑚1
2 +𝑚2

2

For the purposes of this talk, the equations of motion are

Where the square brackets denote a trace.



EOM
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MG trouble
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𝑓𝜇𝜈 = diag(−1,+1,+1,+1)

Two metrics: 𝑔 and 𝑓, but only enough gauge freedom for one!

For us, 𝑓 is Minkowski, and we work in Cartesians, so

We will work with the components of the 𝐸𝜇𝜈 vierbein directly

We also decompose its spatial part as

𝐸𝑖𝑗 = ෨𝐸𝑖𝑗 + ෨𝐸𝛿𝑖𝑗



Constraints galore
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0 = 𝑉𝜇 = ∇𝜈 𝑚1
2𝑀𝜇𝜈

1
+𝑚2

2𝑀𝜇𝜈
2

A priori, this propagates 10 dofs in 𝐸: 𝐸𝑡𝑡, 𝐸𝑡𝑖, ෨𝐸 and ෨𝐸𝑖𝑗

Take divergence of EOM:

ℰ𝜇𝜈 ≔ 𝐺𝜇𝜈 +𝑚1
2𝑀𝜇𝜈

(1)
+𝑚2

2𝑀𝜇𝜈
(2)

− 𝑇𝜇𝜈 = 0

Recall the MG equation of motion:

This vector constraint can be used to solve the second order dynamics of 𝐸𝑡𝑖 and ෨𝐸



Constraints galore
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0 =
1

2
𝑚1
2𝑔𝜇𝜈 +𝑚2

2𝐸𝜇𝜈 ℰ𝜇𝜈 + ∇ ∙ 𝜉

Then, somewhat magically

𝜉𝜇 ≔ 𝐸𝜇𝛼𝑓
𝛼𝛽𝑉𝛽

Define

Gives a scalar constraint which can determine 𝐸𝑡𝑡 algebraically



Constraints galore
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Which fix 𝐸𝑡𝑖 and ෨𝐸 on the initial surface.

In the end, we only have 5 propagating dofs: they are the ෨𝐸𝑖𝑗

ℰ 𝑡
𝑡 , ℰ 𝑖

𝑡

Finally, we still have the usual Hamiltonian and Momentum constraints



A sliver of results
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We work in spherical symmetry. Small initial data works fine, larger data breaks.



A sliver of results
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We work in spherical symmetry. Small initial data works fine, larger data breaks.

Scalar constraint breaks



What’s next?
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• Go to higher mass terms

• Check whether Vainshtein works

• Relax spherical symmetry

• Maybe a merger?

• Try other reference metrics 



Thank you!
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