Higher Order Corrections in Pure Spinor SYM

Callum L. Hunter

(Carlos Mafra)

December 8, 2022

Southâmparton

Sections

(1) Introduction

(2) Non-Linear Super Yang-Mills

(3) Ansatz Building

4 α^{3} Corrections

Non Linear Fields

- Pure Spinor Superstring OPEs inspired a recursive approach λ^{α} where $\lambda \gamma^{\mu} \lambda=0$.

$$
\left[\begin{array}{lll}
1012.398]
\end{array}\right]
$$

- Pue Spinor Superstring OPEs inspired a recursive approach [1012.3987]
- Inspired Non-linear fieds that genente Multipartide fields

$$
\mathbb{A}_{\alpha}(x, 0), \mathbb{A}^{m}(x, 0), \mathbb{F}^{m n}(x, 0), \mathbb{W}^{\alpha}(x, 0)
$$

- Puce Spiro Superstring OPES inspired a recursive approach

$$
[1012.3987]
$$

- Inspired Non-linear fields that generate Multipartide fields

$$
\mathbb{A}_{\alpha}(x, 0), \mathbb{A}^{m}(x, 0), \mathbb{F}^{m n}(x, 0), \mathbb{W}^{\alpha}(x, 0)
$$

- Capture the n-point expansion of the field and Kinematic factors!

$$
\begin{aligned}
& \text { Tree-Level } \rightarrow \frac{1}{3} \operatorname{Tr}\langle\mathbb{V} V V\rangle \leftarrow[1510.08843] \\
& \left\langle\lambda^{3} \theta^{5}\right\rangle=2880, \mathbb{V}=\lambda^{\alpha} \mathbb{A} \alpha
\end{aligned}
$$

Higher Order Corrections \& Methods

- Non-Abelion α^{14} Corrections found using Super space Methods + Cohomology

$$
[1004.3466]
$$

- Non-Abelian x^{14} Corrections found using Super space Methods + Cohomology [1004.3466]
- BRST operator in PS = Simple!

$$
\begin{aligned}
& Q=\lambda^{\alpha} D_{x} \quad[\text { hep }- \text { th/0001035]. } \\
& \text { Spinor Derivative } \\
& D_{\kappa} \equiv \partial_{\alpha}+1 / 2\left(\gamma^{m} \theta\right)_{\mu} \partial_{m}
\end{aligned}
$$

Higher Order Corrections \& Methods

- Non-Abelion α^{14} Corrections found using Super space Methods + Cohomology [1004.3466]
- BRST operable in PS $=$ Simple!

$$
Q=\lambda^{k} D_{K} \quad[\text { hep }-t h / 0001035] .
$$

- Find BRST Closed (NOT EXACT) expression at Correct Mass dimension
\rightarrow Obtain the Perturbiner expansion

Sections

(1) Introduction

(2) Non-Linear Super Yang-Mills

(3) Ansatz Building

(4) α^{13} Corrections

Non-Linear Equation of Motion

- Non-Linear SYM is built from the Spinor and Vector Covariant derivatives,

$$
\nabla_{\alpha}=D_{\alpha}-A_{\alpha}, \quad \nabla_{m}=\partial_{m}-\mathbb{A}_{m}
$$

- We impose the following constraint,

$$
\begin{aligned}
\left\{\nabla_{\alpha,}, \nabla_{\beta}\right\}= & \gamma_{\alpha \beta}^{\mu} \nabla_{\mu} \\
& {\left[\text { Written ' }^{86}\right] }
\end{aligned}
$$

Non-Linear Equation of Motion

O Using the Bionchi identity and the above Constraint Yields the equations of Motion:

$$
\begin{aligned}
\left\{D_{(\alpha}, \mathbb{A}_{\beta)}\right\} & =\gamma_{\alpha \beta}^{m} \mathbb{A}_{m}+\left\{\mathbb{A}_{\alpha}, \mathbb{A}_{\beta}\right\}, \\
\left\{D_{\alpha}, \mathbb{W}^{\beta}\right\} & =\frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}{ }^{\beta} \mathbb{F}_{m n}+\left\{\mathbb{A}_{\alpha}, \mathbb{W}^{\beta}\right\}, \\
{\left[D_{\alpha}, \mathbb{A}_{m}\right] } & =\left[\partial_{m}, \mathbb{A}_{\alpha}\right]+\left(\gamma_{m} \mathbb{W}\right)_{\alpha}+\left[\mathbb{A}_{\alpha}, \mathbb{A}_{m}\right], \\
{\left[D_{\alpha}, \mathbb{F}^{m n}\right] } & =\left(\mathbb{W}^{[m} \gamma^{n]}\right)_{\alpha}+\left[\mathbb{A}_{\alpha}, \mathbb{F}^{m n}\right],
\end{aligned}
$$

O Using the Bianchi identity and the above Constraint yields the equations of Motion:

$$
\begin{aligned}
\left\{D_{(\alpha}, \mathbb{A}_{\beta)}\right\} & =\gamma_{\alpha \beta}^{m} \mathbb{A}_{m}+\left\{\mathbb{A}_{\alpha}, \mathbb{A}_{\beta}\right\} \\
\left\{D_{\alpha}, \mathbb{W}^{\beta}\right\} & =\frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}^{\beta} \mathbb{F}_{m n}+\left\{\mathbb{A}_{\alpha}, \mathbb{W}^{\beta}\right\} \\
{\left[D_{\alpha}, \mathbb{A}_{m}\right] } & =\left[\partial_{m}, \mathbb{A}_{\alpha}\right]+\left(\gamma_{m} \mathbb{W}\right)_{\alpha}+\left[\mathbb{A}_{\alpha}, \mathbb{A}_{m}\right] \\
{\left[D_{\alpha}, \mathbb{F}^{m n}\right] } & =\left(\mathbb{W}^{[m} \gamma^{n]}\right)_{\alpha}+\left[\mathbb{A}_{\alpha}, \mathbb{F}^{m n}\right]
\end{aligned}
$$

We can use these for

$$
\begin{aligned}
& \text { We can Use these for } \\
& \text { BRST Variations } \longrightarrow\left[Q, A_{m}\right]= {\left[\partial_{m}, \lambda A\right]+\left(\lambda Y_{m} \mathbb{W}\right) } \\
&+\left[\lambda A, A_{m}\right] .
\end{aligned}
$$

Non-Linear Equation of Motion

- Dirac and Yang-Mills:

$$
\gamma_{\alpha \beta}^{m}\left[\nabla_{m}, W^{\beta}\right]=0, \quad \partial_{m} \mathbb{F}^{m}=\gamma_{\alpha \beta}^{n}\left\{\mathbb{W}^{\kappa}, \mathbb{W}^{p} \xi\right.
$$

Non-Linear Equation of Motion

- Dirac and Yang-Mills:

$$
\gamma_{\alpha \beta}^{m}\left[\nabla_{m}, W^{\beta}\right]=0, \quad \partial_{m} \mathbb{F}^{m}=\gamma_{\alpha \beta}^{n}\left\{W^{\alpha}, W^{\beta} \xi\right.
$$

- We can treat higher mass fields like $\left[\nabla_{m}, W^{*}\right]$ as 'fundamental',

$$
\mathbb{K}^{m_{1}-m_{k} \mid N}=\left[\nabla^{m_{1}}, \mathbb{K}^{m_{2} . . m_{k} \mid N}\right]
$$

\longrightarrow They also obey 'Dirac + Yang - Mills'eqns. [2210.14241].

Contains Deconcatenation.

Generating Series

- Non-lineal fields Can be expanded as a hie algebra Valued generating series with BG Coefficients.
- Non-linear fields Can be expanded as a hie algebra Valued generating series with BG Coefficients.

$$
\mathbb{K}=\sum_{p=1}^{\infty} \sum_{i, \ldots i p} K_{i, \ldots, p} t^{i_{1} \ldots} t^{i_{p}}
$$

- Multiparticle BG Currents have Correct pole structure,

Sections

(1) Introduction

(2) Non-Linear Super Yang-Mills

(3) Ansatz Building

Dynkin Labels of $\mathfrak{s o}(10)$

- Consider all terms of Correct mass dimension

A $\alpha^{1^{3}}$ this is dimension 7.5.

$$
\begin{aligned}
& \nabla_{m} \leftrightarrow 1 \\
& A_{\alpha} \leftrightarrow 0.5 \\
& A_{m} \leftrightarrow 1 \\
& \mathbb{F}_{m n} \leftrightarrow 2 \\
& W^{\alpha} \leftrightarrow 1.5
\end{aligned}
$$

Dynkin Labels of $\mathfrak{s o}(10)$

- Consider all terms of Correct mass dimension A $\alpha^{1^{3}}$ this is dimension 7.5.
- Use Dynkin labels to determine if in SOl (0) group structure.

Also check Constraints +Scalars

Dynkin Labels of $\mathfrak{s o}(10)$

- Consider all terms of Correct mass dimension A $\alpha^{1^{3}}$ this is dimension 7.5.
- Use Dynkin labels to determine if in SOl (0) group structure.
- Find all allowed permutations + Contractions \rightarrow This gives the anserz

Dynkin Labels of $\mathfrak{s o}(10)$

- Basis labels:

$$
\begin{aligned}
& \text { Scalar } A=(0,0,0,0,0), \\
& \text { Vector } A^{m}=(1,0,0,0,0), \\
& \text { 2-Form } A^{[m n]}=(0,1,0,0,0), \\
& \text { 3-Form } A^{[m n p]}=(0,0,1,0,0), \\
& \text { Anti-Weyl } \xi_{\alpha}=(0,0,0,1,0), \\
& \text { Weyl } \xi^{\alpha}=(0,0,0,0,1), \\
& \quad[\text { hep - th } 0205165]
\end{aligned}
$$

Ansatz Terms

- Example: $\mathbb{V}(\lambda \gamma W)(\lambda \gamma W) D^{2} \mathbb{F}$

0 Decomposition $\Rightarrow 1(0,0,0,0,0)+\cdots$

- Only a Single Scalar:

$$
\mathbb{V}\left(\lambda r^{m} \mathbb{W}\right)\left(\lambda r^{p} \mathbb{W}\right) \mathbb{F}^{m n \mid p n}
$$

Ansatz Terms

- Example: $\mathbb{V}(\lambda \gamma W)(\lambda \gamma W) D^{2} \mathbb{F}$
- Decomposition $\Rightarrow 1(0,0,0,0,0)+\ldots$
- Only a single scalar:

$$
\mathbb{V}\left(\lambda r^{m} W\right)\left(\lambda r^{p} W\right) \mathbb{F}^{m n / p n}
$$

- Repeating this for all terms We Can think of gives 162 terms \longrightarrow After PS $+E_{0} M$.

Higher Mass Identities

- Higher order terms can often be re-written as lower order
- Higher order terms can often be re-written as lower order

O E.g. $D^{N} \mathbb{F}$ and $D^{N} W, N \geqslant 2$ Can be decomposed into sym. Traces part + other fields.

$$
\begin{aligned}
& \mathbb{F}^{a b \mid m n}= \hat{\mathbb{F}}^{(a b) \mid m n}+\frac{\delta^{a b}}{5}\left(\left[\mathbb{F}^{m p}, \mathbb{F}^{p n}\right]+\left\{\left(\mathbb{W}^{[m} \gamma^{n]}\right), \mathbb{W}\right\}\right)+\frac{1}{2}\left[\mathbb{F}^{m n}, \mathbb{F}^{a b}\right] \\
& \text { sym. }+ \text { Traceless in abb. }
\end{aligned}
$$

Sections

(1) Introduction

(2) Non-Linear Super Yang-Mills

(3) Ansatz Building
(4) α^{13} Corrections

- After applying BRST Closure \rightarrow Fix last unknown $\begin{aligned} \text { With } 4 \text {-point amp }\end{aligned}$ with 4 -point amp.

O The Find result gives.

Outlook

- Connection between \mathbb{V} and No-V Corrections, $\mathbb{F}^{m l p q}\left(\lambda \gamma^{p} \mathbb{W}\right)\left(\lambda \gamma^{q} W\right)\left(\lambda \gamma^{m} W\right)$.

Find ghost $n \geqslant 2$ expression + Match in Superspace.

Outlook

O Connection between \mathbb{V} and NO- \mathbb{V} Corrections,

$$
\mathbb{F}^{m l p q}\left(\lambda \gamma^{p} \mathbb{W}\right)\left(\lambda \gamma^{q} \mathbb{W}\right)\left(\lambda \gamma^{m} W\right)
$$

O $\left(\alpha^{\prime}\right)^{4}$ Corrections in Pure spinor Superspace
\rightarrow Ansatz Over 12,000 terms
\rightarrow Canonicalization difficult.
L Would yield $\frac{\text { Perturbiner Expansion! }}{n \text {-point. }}$

Thank You

