Non-Linear Solutions and the Double Copy

Kymani Armstrong-Williams ${ }^{1}$,
Chris White ${ }^{1}$, Sam Wikeley ${ }^{1}$
${ }^{1}$ Center for Theoretical Physics, Queen Mary University of London

Friday $16^{\text {th }}$ December 2022

Double Copy: The Colour-Kinematics duality

- Within the last 2 decades, a duality has been (known as the Double Copy) written down for amplitudes between Quantum Gravity and Yang-Mills theory.

Double Copy: The Colour-Kinematics duality

- Within the last 2 decades, a duality has been (known as the Double Copy) written down for amplitudes between Quantum Gravity and Yang-Mills theory.
- Within the last decade, this duality has been extended to classical relativistic theories (YM and General Relativity).

Double Copy: The Colour-Kinematics duality

- Within the last 2 decades, a duality has been (known as the Double Copy) written down for amplitudes between Quantum Gravity and Yang-Mills theory.
- Within the last decade, this duality has been extended to classical relativistic theories (YM and General Relativity).
- At a conceptual level, the double copy challenges our current understanding of the foundations for both QFT and GR.

Double Copy: The Colour-Kinematics duality

- Within the last 2 decades, a duality has been (known as the Double Copy) written down for amplitudes between Quantum Gravity and Yang-Mills theory.
- Within the last decade, this duality has been extended to classical relativistic theories (YM and General Relativity).
- At a conceptual level, the double copy challenges our current understanding of the foundations for both QFT and GR.
- The double copy has also found great success as a tool for research; having been utilised in Cosmological (Gravitational Waves) and Optical settings.

Aim of This Talk

- So far little attention has been paid to studying the duality between solutions existing within Euclidean Spacetimes.

Aim of This Talk

- So far little attention has been paid to studying the duality between solutions existing within Euclidean Spacetimes.
- In particular, non-linear solutions have remained frustratingly elusive.

The Kerr-Schild Double Copy

The Kerr-Schild Double Copy

Biadjoint Scalar Theory (BAST)

In $\mathbb{R}^{(1, d-1)}$, the Lagrangian density for BAST with Gauge structure $\mathfrak{s u}(2) \times \mathfrak{s u}(2)$ is given by:

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2} \partial^{\mu} \Phi^{a a^{\prime}} \partial_{\mu} \Phi^{a a^{\prime}}+\frac{g}{3} \epsilon^{a b c} \epsilon^{a^{\prime} b^{\prime} c^{\prime}} \Phi^{a a^{\prime}} \Phi^{b b^{\prime}} \Phi^{c c^{\prime}} \tag{1}
\end{equation*}
$$

Biadjoint Scalar Theory (BAST)

In $\mathbb{R}^{(1, d-1)}$, the Lagrangian density for BAST with Gauge structure $\mathfrak{s u}(2) \times \mathfrak{s u}(2)$ is given by:

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2} \partial^{\mu} \Phi^{a a^{\prime}} \partial_{\mu} \phi^{a a^{\prime}}+\frac{g}{3} \epsilon^{a b c} \epsilon^{a^{\prime} b^{\prime} c^{\prime}} \Phi^{a a^{\prime}} \phi^{b b^{\prime}} \Phi^{c c^{\prime}} \tag{1}
\end{equation*}
$$

Performing the Wick rotation ($\tau \rightarrow \mathrm{it}$) on (1), we derive the E.O.M for BAST in \mathbb{R}^{d} to be:

$$
\begin{equation*}
\triangle \Phi^{a a^{\prime}}+g \epsilon^{a b c} \epsilon^{a^{\prime} b^{\prime} c^{\prime}} \Phi^{b b^{\prime}} \Phi^{c c^{\prime}}=0 \tag{2}
\end{equation*}
$$

Non-Linear Solutions in D-Dimension

Considering only spherical symmetric solutions, set:

$$
\begin{equation*}
\Phi^{a a^{\prime}}=\frac{\delta^{a a^{\prime}}}{g T_{A}} f(r) \tag{3}
\end{equation*}
$$

Inputting (3) into (2), we derive:

$$
\begin{equation*}
\frac{1}{r^{d-1}} \frac{d}{d r}\left(r^{d-1} \frac{d f(r)}{d r}\right)+f^{2}(r)=0 \tag{4}
\end{equation*}
$$

Non-Linear Solutions in D-Dimension

Choosing a power-like ansatz:

$$
\begin{equation*}
f(r)=A r^{\alpha} \tag{5}
\end{equation*}
$$

We find a general solution for $\Phi^{a a^{\prime}}$ in d dimensions:

$$
\begin{equation*}
\Phi^{a a^{\prime}}=\frac{2 \delta^{a a^{\prime}}}{g T_{A}} \frac{d-4}{r^{2}} \tag{6}
\end{equation*}
$$

Where for $d=4$, we find that there exists no power-like instanton solutions.

The Mystery of $d \neq 4$

To see why this is the case, choose a more general ansatz (in d dimensions):

$$
\begin{equation*}
f(r)=\frac{K(r)-1}{r^{2}}, \tag{7}
\end{equation*}
$$

Where taking $K(r) \rightarrow 1$ yields the trivial solution.

The Mystery of $d \neq 4$

To see why this is the case, choose a more general ansatz (in d dimensions):

$$
\begin{equation*}
f(r)=\frac{K(r)-1}{r^{2}}, \tag{7}
\end{equation*}
$$

Where taking $K(r) \rightarrow 1$ yields the trivial solution. Subsititing (7) into (4) and performing the substitution $r=e^{-\xi}(-\infty<\xi<\infty)$, we find:

$$
\begin{equation*}
\frac{\partial^{2} K}{\partial \xi^{2}}-(d-6) \frac{\partial K}{\partial \xi}+(K-1)(K-2 d+7)=0 \tag{8}
\end{equation*}
$$

We must employ numerical methods in order to solve this (critical points and integral curves).

Numerical Solutions: Part 1

Setting $\psi=\frac{\partial K}{\partial \xi}$, we receive a pair of coupled differential equations:

$$
\begin{array}{r}
\psi=\frac{\partial K}{\partial \xi} \\
\frac{\partial \psi}{\partial \xi}=(d-6) \psi-(K-1)(K-2 d+7) \tag{10}
\end{array}
$$

Now writing both (9) and (10) into a vector field :

$$
\begin{equation*}
\left(\frac{\partial K}{\partial \xi}, \frac{\partial \psi}{\partial \xi}\right)=(\psi,(d-6) \psi-(K-1)(K-2 d+7)) \tag{11}
\end{equation*}
$$

Numerical Solutions: Part 2

Solving (11) yields a vector field (K, ψ), where in d dimensions, we have two solutions:

$$
\begin{array}{r}
K=1, \psi=0 \\
K=2 d-7, \psi=0 \tag{13}
\end{array}
$$

Notice, for $d=4$, the only solution for $\Phi^{a a^{\prime}}$ corresponds to the trivial solution. Thus, there are no non-linear power-like solutions for $d=4$.

$D=4$ Solution

Conclusion and Further Work

- In \mathbb{R}^{4}, there exist no radial power-like solution to the full (non-linear) EOM for BAST.
- However, non-linear solutions do exist for $d \neq 4$.
- There exists solutions for the linearised EOM for BAST in \mathbb{R}^{4}. Through the Double Copy, we know that these solutions are related to the Eguchi Hanson gravitation instanton.
- Investigation into such solutions would require the use of the Operator Formalism of the Kerr-Schild Double Copy. (10.1007/JHEP08(2022)160)

The Kerr-Schild Double Copy: Operator Formalism

