Electroweak Input Schemes in the SMEFT Tommy Smith in collaboration with Anke Biekötter, Benjamin Pecjak and Darren Scott

The choice of Electroweak input scheme is how we eliminate the SU(2) and hypercharge gauge couplings g_1 and g_2 as well as the Higgs doublet field vacuum expectation value v_T in favour of three physical input parameters.

We have chosen to consider three input schemes:

The α_μ scheme, which uses the inputs {G_F, M_W, M_Z}
The α scheme, which uses the inputs {α, M_W, M_Z}
The LEP scheme, which uses the inputs {α, G_F, M_Z}

The Z boson mass is usually chosen as an input due to the precision of its measurement.

To implement the α_{μ} scheme, we first rewrite the tree level Lagrangian in terms of v_T, M_W and M_Z using

$$\overline{g}_1 = \frac{2M_W s_w}{c_w v_T} \left[1 + c_w s_w \left(C_{HWB} + \frac{c_w}{4s_w} C_{HD} \right) v_T^2 \right]$$

$$\overline{g}_2 = \frac{2M_W}{v_T},$$

The renormalised Lagrangian is obtained by treating tree level parameters as bare ones and replacing them with the renormalised ones plus a counter term. The boson masses are renormalised through 2-pt functions, and the bare vev is renormalised through the following, where the corrections ensure the tree level muon decay is exact to all orders.

 $\frac{1}{v_{T,0}^2} = \frac{1}{v_{\mu}^2} \left[1 - v_{\mu}^2 \Delta v_{\mu}^{(6,0,\mu)} - \frac{1}{v_{\mu}^2} \Delta v_{\mu}^{(4,1,\mu)} - \Delta v_{\mu}^{(6,1,\mu)} \right]$

To use the α scheme, we define

$$v_{\alpha} = \frac{M_W^2 s_w^2}{\pi \alpha}$$

At tree level the relation between v_T and v_{α} is given by

$$\frac{1}{v_T^2} = \frac{1}{v_\alpha^2} \left(1 + 2v_\alpha^2 \frac{c_w}{s_w} \left[C_{HWB} + \frac{c_w}{4s_w} C_{HD} \right] \right)$$

Again treating as a bare equation and replacing tree level parameters with renormalised ones plus counter terms defined through two point functions, we have:

$$\frac{1}{v_{T,0}^2} = \frac{1}{v_{\alpha}^2} \left[1 - v_{\alpha}^2 \Delta v_{\alpha}^{(6,0,\alpha)} - \frac{1}{v_{\alpha}^2} \Delta v_{\alpha}^{(4,1,\alpha)} - \Delta v_{\alpha}^{(6,1,\alpha)} \right]$$

If we have a result in the α_{μ} scheme, we can obtain the result in the α scheme by using the following equation, derived by equating the two expansions for $v_{\rm T}$

 $\frac{v_{\alpha}^2}{v_{\mu}^2} \equiv 1 + \Delta r = 1 + v_{\alpha}^2 \Delta r^{(6,0)} + \frac{1}{v_{\alpha}^2} \Delta r^{(4,1)} + \Delta r^{(6,1)}$

The LEP doesn't use the W boson mass as an input and so is slightly more complicate to use. We can use the definition of v_{α} to find a relation for the on shell W boson mass in terms of Δr .

Using this equation iteratively on itself to re-express the on shell W boson mass within the Δr , gives an expression for M_W in the LEP. This is then substituted into any expression in the α_{μ} scheme. Once we have expand to desired order in loop and dimension we obtain the expression in the LEP scheme.

$$M_W^2 = \hat{M_W}^2 \left[1 - \frac{\hat{s}_w^2}{\hat{c}_{2w}} \Delta r - \frac{\hat{c}_w^2 \hat{s}_w^4}{\hat{c}_{2w}^3} \Delta r^2 \right] + \mathcal{O}\left(\Delta r^3\right)$$

$$\hat{M}_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha v_\mu^2}{M_Z^2}} \right)$$

$$M_W = \hat{M}_W \left[1 + v_\mu^2 \hat{\Delta}_W^{(6,0,\mu)} + \frac{1}{v_\mu^2} \hat{\Delta}_W^{(4,1,\mu)} + \hat{\Delta}_W^{(6,1,\mu)} \right]$$

The perturbative convergence of any weak process in the different schemes is easily understood. The differences between the schemes

Number of Wilson Coefficients introduced

is (characterised by	the $\Delta r^{(4,1)}$ and	numerically the	ese evaluate to			
	$\frac{\Delta r^{(4,1)}}{v_{\alpha}^2} = -\frac{1}{v_{\alpha}^2}$	-4%	$\frac{-\hat{s}_w^2}{2\hat{c}_w^2 - 1} \frac{\hat{\Delta}r^{(4,1)}}{v_\mu^2} = 1.5\%$				
		Electroweak SM Corrections					
	Scheme	$W \to \tau \nu_{\tau}$	$Z \to \tau^+ \tau^-$	$H \to b\overline{b}$			
	lpha	-4.2%	-4.0%	-4.8%			
	$lpha_{\mu}$	-0.3%	< 0.1%	-0.8%			
	LEP	1.2%	0.1%	-0.7%			

The LEP and α_{μ} only differ when M_W appears in the tree level matrix element. For full SMEFT results read the paper [arXiv:2212.TBC]

Scheme		M_{W}	M_{Z}	V_T	Total		
					unique		
α	LO	0	0	2	2		
	NLO	12	29	29	29		
α_{μ}	LO	0	0	3	3		
	NLO	13	30	12	33		
TFD	LO	5	0	3	5		
	NLO	33	30	12	33		