ATLAS Roman Pots General Experimental Overview

Maciej Trzebiński

Institute of Nuclear Physics Polish Academy of Sciences

Photon-induced processes IPPP Durham, 3rd November 2022

View of ATLAS Roman Pots Organization

ARP - General Experimental Overview

Measurement Methods

Assumption: one would like to measure diffractive interactions at the LHC. Typical diffractive topology: a gap in rapidity is present between proton(s) and central system and one or both interacting proton stay intact.

ARP - General Experimental Overview

detector

point

Forward Detectors @ IP1 (ATLAS)

Intact protons \rightarrow **natural diffractive signature** \rightarrow usually scattered at very small angles (μ rad) \rightarrow detectors must be located far from the Interaction Point.

- Absolute Luminosity For ATLAS
- 240 m from ATLAS IP
- soft diffraction (elastic scattering)
- special runs (high β^* optics)
- vertically inserted Roman Pots
- tracking detectors, resolution:

 $\sigma_x = \sigma_y = 30 \ \mu m$

ATLAS Forward Proton

- 210 m from ATLAS IP
- hard diffraction
- nominal runs (collision optics)
- horizontally inserted Roman Pots
- tracking detectors, resolution: $\sigma_x = 6 \ \mu m, \ \sigma_y = 30 \ \mu m$
- timing detectors, resolution: $\sigma_t \sim 25 \ \mathrm{ps}$

 $X(M_x) \circ t - squared four-momentum transferred from the proton:$

$$t \approx -p_T^2$$

- *p*_T proton transverse momentum
- ξ momentum fraction of the proton carried by the Pomeron:

$$\xi = 1 - E/E_{beam}$$

 $\xi pprox \sum_{i} (E^{i} \pm p_{z}^{i})/\sqrt{s}$

• $\Delta\eta$ – pseudorapidity gap – space in which no particles are produced / detected

Optics

Proton trajectory is determined by the LHC magnetic field.

Proton trajectory is determined by the LHC magnetic field.

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

Proton trajectory is determined by the LHC magnetic field.

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

collision optics, ALFA and AFP: trajectory due to p_y

Proton trajectory is determined by the LHC magnetic field.

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

collision optics, ALFA and AFP: trajectory due to p_y

special high- β^* optics, ALFA: improve acceptance in $p_T = \sqrt{px^2 + py^2}$

M. Trzebiński

Simulation: distance from the beam was set to 10σ ($\beta^* = 0.55$ m) or 15σ ($\beta^* = 90$ and 1000 m). From SPIE 9290 (2014) 929026, arXiv:1408.1836

M. Trzebiński

ARP - General Experimental Overview

thin window and floor (300 μ m)

M. Trzebiński

ARP - General Experimental Overview

M. Trzebiński

ARP - General Experimental Overview

M. Trzebiński

ARP - General Experimental Overview

ARP - General Experimental Overview

^{9/44}

Detectors

AFP: Silicon Trackers (SiT)

- Four detectors in each station.
- Technology: slim-edge 3D ATLAS IBL pixel sensors bonded with FE-I4 readout chips.
- Pixel size: $50x250 \ \mu m^2$.
- Tilted by 14^0 to improve resolution in *x*.
- Resolution: \sim 6 μ m in x and \sim 30 μ m in y.
- Trigger: majority vote (2 out of 3; two chips in FAR station are paired and vote as one).
- No major changes between Run 2 and Run 3 detector setups.

From JINST **11** (2016) P09005; JINST **12** (2017) C01086

Proton Tagging or Position Measurement?

- At the interaction point proton (IP) is fully described by six variables: position (x_{IP}, y_{IP}, z_{IP}), angles (x'_{IP}, y'_{IP}) and energy (E_{IP}).
- They translate to unique position at the forward detector (*x*_{DET}, *y*_{DET}, *x*'_{DET}, *y*'_{DET}).
- Idea: get information about proton kinematics at the IP from their position in the AFP detector.
- Exclusivity: kinematics of scattered protons is strictly connected to kinematics of central system.
- Detector resolution play important role in precision of such method.

491460; ATLAS-TDR-024

Time-of-Flight Detectors (ToF) in 2017

ToF LQbars

Tracking-Timing correlation y

Setup and performance shown above are from test-beam (Opt. Express 24 (2016) 27951, JINST 11 (2016)

- 4x4 quartz bars oriented at the Cherenkov angle with respect to the beam trajectory.
- Light is directed to Photonis MCP-PMT.
- \bullet Expected resolution: ${\sim}25$ ps.
- Installed in both FAR stations.

Pile-up Background Reduction

signal

background

background

Idea:

- measure difference of time of flight of scattered protons, $(t_A - t_C)/2$
- compare to vertex reconstructed by central detector. $(t_A - t_C) \cdot c/2 - z_{central}$

Performance of Time-of-Flight Detectors in 2017

- Performance analysis based on 2017 data (taken with $\mu \approx$ 2): ATL-FWD-PUB-2021-002.
- Poor efficiency of few percent due to fast PMT degradation; effect not expected during Run 3 due to new PMTs.
- Very good timing resolution: 20 50 ps for single bar.
- Overall time resolution of each ToF detector:
 - 20 ± 4 ps for side A,
 - 26 ± 5 ps for side C,
 - note: systematic uncertainties dominate.

- Improvement in silicon detector cooling (new heat exchangers).
- Production of new tracking modules.
- New design of detector flange: Out-of-Vacuum solution for ToF detectors
- New trigger module: possibility to trigger on single train.
- New photo-multipliers: address inefficiency issues from Run2 data-taking.
- Above items were successfully tested at DESY in 2020.

Both NEAR and FAR station have been successfully installed:

- laser survey (positioning wrt. LHC) done,
- $\bullet\,$ interlock validation done \rightarrow Roman pots qualified to be inserted to take data,
- SiT readout and trigger commissioned,
- ToF commissioning ongoing,
- successful data-taking during high- and low- μ runs in 2022.

Backgrounds

Probability of Single and Double Tag

Note: Double Diffractive Dissociation with protons from hadronisation propagating in forward direction.

M. Trzebiński

ARP - General Experimental Overview

SD Jet Background

ND Jet Background

SD + ND Jet Background

What happens if the Single and Double Tag Probabilities are higher than predicted by MC generators?

Probability				
Single Tag	Double Tag			
0.039	$1.4\cdot 10^{-4}$			
1.1 .0.039	$2 \cdot 1.4 \cdot 10^{-4}$			
1.5 .0.039	$5 \cdot 1.4 \cdot 10^{-4}$			

One Vertex Requirement

Two inefficiency sources:

- soft vertex is merged with a hard one ($\Delta z = 1 \text{ mm}, \Delta z = 2 \text{ mm}$),
- not enough reconstructed tracks pointing to the soft vertex ($n_{trk} = 2$, $n_{trk} = 4$).

Min. number	Probability			
of tracks	SD	DD	ND	min-bias
2	0.532	0.601	0.995	0.876
3	0.494	0.540	0.985	0.855
4	0.457	0.483	0.968	0.831
5	0.419	0.429	0.944	0.801

Data Samples

Data Taken in 2016 and 2017

2016

- Conditions: $\sqrt{s} = 13$ TeV, $\beta^* = 0.4$ m
- Only two stations installed (ATLAS side C).
- Only single tagged events.
- Data taken during BBA:
 - two runs,
 - closer to the beam than during standard collisions,
 - very useful for alignment and optics studies.

• Data taken during special runs:

- $\mu \sim$ 0.03:
 - int. lumi.:~40 nb⁻¹,
 - AFP triggers: ${\sim}2$ kHz stored,
 - main goal: soft diffraction.
- $\mu \sim$ 0.3:
 - int. lumi.:~500 nb⁻¹,
 - AFP triggers: ~2 kHz stored,
 - main goal: low-p_T jets.
- Data taken during standard runs:
 - AFP was inserted only when number of bunches was not greater than 600 (ramp-up).

2017

- $\sqrt{s} = 13$ TeV, $\beta^* = 0.3$ and 0.4 m
- Full system ready.
- Single and double tagged events.
- Data taken during BBA:
 - two runs.
- Data taken during special runs:
 - $\mu \sim$ 0.05:
 - int. lumi.: $\sim 65 \text{ nb}^{-1}$,
 - AFP triggers: ∼2 kHz stored,
 - main goal: soft diffraction.
 - $\mu \sim 1$:
 - int. lumi.:~640 nb⁻¹,
 - AFP triggers: ${\sim}2$ kHz stored,
 - main goal: low-p_T jets.
 - $\mu \sim 2$:
 - int. lumi.:~150 pb⁻¹,
 - AFP triggers: \sim 300 Hz stored,
 - goals: medium-p_T jets, W/Z.
- Data taken during standard runs:
 - AFP was inserted on regular basis, usually few minutes after stable beams.

- This is only ATLAS and AFP recorded there are no corrections due to efficiency of subsystems, *etc.*
- ToF trigger and detector were suffered very low efficiency → analysis should base on proton tagging rather than on ToF background reduction.

Glance on Analysis: Exclusive Di-lepton Measurement with AFP Tag

PHYSICAL REVIEW LETTERS 125, 261801 (2020)

Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS

G. Aad et al.* (ATLAS Collaboration)

(Received 2 October 2020; revised 30 October 2020; accepted 23 November 2020; published 23 December 2020)

- Exclusive di-muons, $pp \rightarrow pl^{-}l^{+}p$:
 - proton(s) measured in AFP,
 - leptons ($\mu^+\mu^-$ or e^+e^-) measured in ATLAS.
- 2017 data; $\sqrt{s} = 13$; $L = 14.6 \text{ fb}^{-1}$.
- Powerful background rejection due to AFP:
 - proton tagging,
 - kinematics match: proton vs lepton system.
- 57 (123) candidates in the $ee + p (\mu \mu + p)$ final state.
- Background-only hypothesis rejected with a significance exceeding 5σ in each channel.
- Measured cross sections:

$$\begin{split} \sigma_{ee+p} &= 11.0 \pm 2.6 (\mathrm{stat}) \pm 1.2 (\mathrm{syst}) \pm 0.3 (\mathrm{lumi}), \\ \sigma_{\mu\mu+p} &= 7.2 \pm 1.6 (\mathrm{stat}) \pm 0.9 (\mathrm{syst}) \pm 0.2 (\mathrm{lumi}). \end{split}$$

Geometric Acceptance in 2022

2022 Performance

Hard Diffractive Processes

Single Diffractive Jet Production

Motivation:

- measure cross section and gap survival probability,
- search for the presence of an additional contribution from Reggeon exchange,
- check Pomeron universality between ep and pp colliders.

Example: purity and statistical significance for AFP and $\beta^* = 0.55$ m.

More details in: J. Phys. G: Nucl. Part. Phys. 43 (2016) 110201

Motivation:

- measure cross section and gap survival probability,
- measure Pomeron structure and flavor composition,
- search for charge-asymmetry.

Example: $W \rightarrow l \nu$ – purity and stat. significance for AFP and $\beta^* = 0.55$ m.

W asymmetry studies published in: Phys.Rev. D 84 (2011) 114006 More details in: J. Phys. G: Nucl. Part. Phys. 43 (2016) 110201

Single Diffractive Charmed Meson Production

Motivation:

- measure cross section and gap survival probability,
- test the *k_t*-factorization approach.

Example: purity ALFA and AFP for $\beta^*=$ 0.55 and 90 m with and without 1 vertex requirement.

More details in: J. High Energ. Phys. 2017 (2017) 89

Double Pomeron Exchange Jet Production

Motivation:

- measure cross section and gap survival probability,
- search for the presence of an additional contribution from Reggeon exchange,
- investigate gluon structure of the Pomeron.

Example: purity and statistical significance for AFP and $\beta^* = 0.55$ m.

More details in: J. Phys. G: Nucl. Part. Phys. 43 (2016) 110201

Motivation:

- measure cross section and gap survival probability,
- sensitive to quark content in Pomeron (at HERA it was assumed that $u = d = s = \overline{u} = \overline{d} = \overline{s}$).

More details in: Phys.Rev. D 88 (2013) 7, 074029

Double Pomeron Exchange Jet-Gap-Jet Production

Motivation:

- measure cross section and gap survival probability,
- test BFKL model.

More details in: Phys.Rev. D 87 (2013) 3, 034010

Exclusive Jet Production

Motivation:

- cross section measurement,
- constrain other exclusive productions (*e.g.* Higgs).

Public ATLAS note: ATL-PHYS-PUB-2015-003

Motivation:

- cross section measurement,
- constrain other exclusive productions (e.g. Higgs).

More details in: Eur. Phys. J. C **75** (2015) 320 and Acta Phys. Pol. B **47** (2016) 1745

- According to HL-LHC machine layout only few locations are possible:
- RP1A at
 195.5 m
 RP2A at
 217.0 m
- RP1B at 198.0 m
- 217.0 m
 RP2B at 219.5 m
- RP3B at 237.0 m
 RP3C at 245.0 m

RP3A at

234 0 m

- Collimators are also relocated:
- TCLPX4 at TCL5 at 136 m
 TCL5 at 121 m
 TCL6 at 221 m
- Studies were done using newest available HL-LHC optics.
- Assumption:
 - $\sqrt{s} = 14 \text{ TeV}, \beta^* = 15 \text{ cm},$
 - crossing angle of 250 μ rad with phase: $\phi = 0$,
 - emittance $\varepsilon = 2.5 \ \mu \text{m} \cdot \text{rad}$.

- High- ξ limit on acceptance is due to beampipe elements and TCL collimators between collision point and Roman pot.
- Low- ξ limit is due to detector-beam distance, which depends on settings of collimators ("hierarchy"; machine protection rules).
- Yellow area corresponds to > 90% of proton tag chance.
- Scattered protons usually (distribution is process-dependent) have p_T around 0.2 GeV.
- Left: detectors located around 195 m: $0.17 \leq \xi \leq 0.31$.
- Center: detectors located around 217 m: $0.1 \leq \xi \leq 0.19$.
- Right: detectors located around 234 m: $0.06 \leq \xi \leq 0.09$.

- Acceptance in ξ translates into the acceptance in mass (note: process dependent as integral sensitive to *p*τ).
- Figure: mass acceptance of all pots and all pots combinations for the case of horizontal crossing angle (\$\phi=0\$):
 - "RP1" indicates that both the protons are tagged at the pot RP1A and RP1B (similarly for RP2 and RP3),
 - "RP1+RP2" means both protons are tagged at any two of the four pot locations RP1A, RP1B, RP2A and RP2B (similarly "RP1+RP3" and "RP2+RP3"),
 - "RP1+RP2+RP3" indicates that protons are tagged at any two stations on each side.

HL-LHC Roman Pots at IP1

- I was asked to 'squeeze' physics case and focus on other topics in this presentation.
- For the real overview, please take a look at Physics opportunities of ATLAS Forward Proton at the High-Luminosity LHC [47 pages, on CDS]:
 - detailed ATLAS simulations:
 - WW (fully leptonic) + EFT study, WW (semi-leptonic), ZZ,
 - various ξ ranges; ToF of 10 and 20 ps,
 - based on ongoing Run 2 analyses: ALP searches ($0.035 < \xi < 0.08$; single-tag),
 - phenomenological studies:
 - semi-exclusive $t\overline{t}$: 0.015 < ξ < 0.15, 10ps,
 - DM searches: $0.015 < \xi < 0.15$, 10ps,
 - exclusive Higgs in SM and BSM: $0.002 < \xi < 0.20$ (420 station considered), 10ps,
 - exclusive dijets: $0.02 < \xi < 0.12$, 10 ps.
- AFP is an asset to the ATLAS physics programme by providing additional handles for kinematic reconstruction and background rejection.
- From detailed simulations for single-tag AFP + ITk + HGTD configurations:
 - · comparable significances observed to those based on central detector only,
 - $\bullet\,$ higher S/B \rightarrow may indicate lower background modelling uncertainties.
- RP1 + RP3 is optimum if only eight stations can be installed.

An Initial Design Report for ATLAS Forward Proton Detectors at the High-Luminosity LHC was sent to a Review Panel called by the ATLAS Upgrade Coordinator on 22 Sep 2022:

- The main review meeting took place on 26/27 September.
- The Review Panel report with recommendations was issued on 10 October: the main recommendation to ATLAS is not to approve the development of an AFP upgrade program for HL-LHC for Run 4, but to reserve the space for possible Run 5 or beyond projects if this is possible for the machine w/o constraints or additional cost.
- The USC endorsed the Review Panel report and its recommendations at its meeting on 13 October 2022.
- The Executive Board approved the Review Panel report and its recommendations at its meeting on 17 October 2022.
- The result has been reported to and accepted by the HL-LHC Coordination Group (HLCG) on 18 October 2022.

- AFP was upgraded during LS2:
 - production of new tracking modules,
 - new design of detector flange: Out-of-Vacuum solution for ToF detectors,
 - new photo-multipliers: address inefficiency issues from Run2 data-taking,
- High and low- μ datasets collected in 2016 (one arm), 2017 and 2022:
 - performance studies close to be finalized,
 - analyses ongoing.
- No Roman Pots in ATLAS during Run 4.