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Measurement Methods

Assumption: one would like to measure diffractive interactions at the LHC.
Typical diffractive topology: a gap in rapidity is present between proton(s) and
central system and one or both interacting proton stay intact.

Method 1 (rapidity gap):

+ usual method of
diffractive pattern
recognition

+ no need to install
additional detectors

– gap may be killed by e.g.
particles from pile-up

– gap may be outside
acceptance of central
detector

Method 2 (forward protons):

+ protons are directly
measured

+ can be used in pile-up
environment

– protons are scattered at
small angles (few µrad)

– additional “forward”
detectors are needed far
away from the interaction
point
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Forward Detectors @ IP1 (ATLAS)

Intact protons → natural diffractive signature → usually scattered at very
small angles (µrad) → detectors must be located far from the Interaction Point.

ALFA
Absolute Luminosity For ATLAS

240 m from ATLAS IP

soft diffraction (elastic scattering)

special runs (high β∗ optics)

vertically inserted Roman Pots

tracking detectors, resolution:
σx = σy = 30 µm

AFP
ATLAS Forward Proton

210 m from ATLAS IP

hard diffraction

nominal runs (collision optics)

horizontally inserted Roman Pots

tracking detectors, resolution:
σx = 6 µm, σy = 30 µm

timing detectors, resolution:
σt ∼ 25 ps
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Kinematic Variables

t – squared four-momentum transferred from
the proton:

t ≈ −p2
T

pT – proton transverse momentum

ξ – momentum fraction of the proton carried
by the Pomeron:

ξ = 1− E/Ebeam

ξ ≈
∑
i

(E i ± pi
z)/
√
s

∆η – pseudorapidity gap – space in which no
particles are produced / detected
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Optics



Forward Proton Trajectories
Proton trajectory is determined by the LHC magnetic field.

collision optics,
ALFA and AFP:
trajectory due to ξ
ξ = 1− Eproton/Ebeam

collision optics,
ALFA and AFP:
trajectory due to py

special high-β∗ optics,
ALFA:
improve acceptance in
pT =

√
px2 + py 2

From SPIE 9290 (2014) 929026, arXiv:1408.1836
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Geometric Acceptance for Various Optics

β∗ = 0.55 m
nominal (collision)

β∗ = 90 m
special (high-β∗)

β∗ = 1000 m
special (high-β∗)

Simulation: distance from the beam was set to 10σ (β∗ = 0.55 m) or 15σ (β∗ = 90 and 1000 m).

From SPIE 9290 (2014) 929026, arXiv:1408.1836
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Advantages of Roman Pot Technology
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M. Trzebiński ARP – General Experimental Overview 9/44



Advantages of Roman Pot Technology

Geometric acceptance:

Mass acceptance:

diffractive protons

LHC beam

x

y

z

thin window and floor (300 µm)

shadow of TCL4 and TCL5
collimators
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Detectors



AFP: Silicon Trackers (SiT)

Four detectors in each station.

Technology: slim-edge 3D ATLAS IBL pixel
sensors bonded with FE-I4 readout chips.

Pixel size: 50x250 µm2.

Tilted by 140 to improve resolution in x .

Resolution: ∼6 µm in x and ∼30 µm in y .

Trigger: majority vote (2 out of 3; two chips in
FAR station are paired and vote as one).

No major changes between Run 2 and Run
3 detector setups. From JINST 11 (2016) P09005;

JINST 12 (2017) C01086
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Proton Tagging or Position Measurement?

At the interaction point proton (IP) is
fully described by six variables:
position (xIP , yIP , zIP), angles (x ′IP ,
y ′IP) and energy (EIP).

They translate to unique position at
the forward detector (xDET , yDET ,
x ′DET , y ′DET ).

Idea: get information about proton
kinematics at the IP from their
position in the AFP detector.

Exclusivity: kinematics of scattered
protons is strictly connected to
kinematics of central system.

Detector resolution play important role
in precision of such method.

From ISRN High Energy Physics (2012)

491460; ATLAS-TDR-024
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Time-of-Flight Detectors (ToF) in 2017

Setup and performance shown above are from test-beam (Opt. Express 24 (2016) 27951, JINST 11 (2016)

P09005).

4x4 quartz bars oriented at the
Cherenkov angle with respect to
the beam trajectory.

Light is directed to Photonis
MCP-PMT.

Expected resolution: ∼25 ps.

Installed in both FAR stations.
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Pile-up Background Reduction

signal background background

Idea:

measure difference of time of
flight of scattered protons,
(tA − tC )/2

compare to vertex
reconstructed by central
detector,
(tA − tC ) · c/2− zcentral
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Performance of Time-of-Flight Detectors in 2017

Performance analysis based on 2017 data (taken
with µ ≈ 2): ATL-FWD-PUB-2021-002.

Poor efficiency of few percent due to fast PMT
degradation; effect not expected during Run 3 due
to new PMTs.

Very good timing resolution: 20 – 50 ps for single
bar.

Overall time resolution of each ToF detector:
20± 4 ps for side A,
26± 5 ps for side C,
note: systematic uncertainties dominate.
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AFP upgrades for RUN 3

Improvement in silicon detector
cooling (new heat exchangers).

Production of new tracking modules.

New design of detector flange:
Out-of-Vacuum solution for ToF
detectors

New trigger module: possibility to
trigger on single train.

New photo-multipliers: address
inefficiency issues from Run2
data-taking.

Above items were successfully tested
at DESY in 2020.

Both NEAR and FAR station have been successfully installed:

laser survey (positioning wrt. LHC) done,

interlock validation done → Roman pots qualified to be inserted to take data,

SiT readout and trigger commissioned,

ToF commissioning ongoing,

successful data-taking during high- and low-µ runs in 2022.
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Backgrounds



Probability of Single and Double Tag

Single Tagged Soft Interaction(ST) Double Tagged Soft Interaction(DT)

p p

jet

je t

p

p p

jet

je t

SD JJ ND JJ SD JJ ND JJ

Process Single Tag Double Tag
(Pythia8) probability cross-section [mb] probability cross-section [µb]

SD 0.18 2.32 4.5 · 10−4 5.8
DD 0.051 0.45 4.3 · 10−4 3.8
ND 0.0054 0.31 1.4 · 10−5 0.8
MB 0.039 3.10 1.4 · 10−4 10.4

Note: Double Diffractive Dissociation with protons from hadronisation
propagating in forward direction.

p

p

p

p

IP

p

p
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SD Jet Background

ST: DT:
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ND Jet Background

ST + ST: ST + DT: DT:
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SD + ND Jet Background

ST + ST: DT: ST:
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M. Trzebiński ARP – General Experimental Overview 21/44



Single and Double Tag Probabilities

What happens if the Single and Double Tag Probabilities are higher than
predicted by MC generators?

Probability
Single Tag Double Tag

0.039 1.4 · 10−4

1.1 ·0.039 2 ·1.4 · 10−4

1.5 ·0.039 5 ·1.4 · 10−4
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One Vertex Requirement
Two inefficiency sources:

soft vertex is merged with a hard one (∆z = 1 mm, ∆z = 2 mm),
not enough reconstructed tracks pointing to the soft vertex (ntrk = 2, ntrk = 4).
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Data Samples



Data Taken in 2016 and 2017

2016 2017
Conditions:

√
s = 13 TeV, β∗ = 0.4 m

Only two stations installed (ATLAS side C).

Only single tagged events.

Data taken during BBA:

two runs,
closer to the beam than during
standard collisions,

very useful for alignment and optics

studies.

Data taken during special runs:

µ ∼ 0.03:

int. lumi.:∼40 nb−1,
AFP triggers: ∼2 kHz stored,
main goal: soft diffraction.

µ ∼ 0.3:

int. lumi.:∼500 nb−1,
AFP triggers: ∼2 kHz stored,
main goal: low-pT jets.

Data taken during standard runs:

AFP was inserted only when number

of bunches was not greater than 600

(ramp-up).

√
s = 13 TeV, β∗ = 0.3 and 0.4 m

Full system ready.

Single and double tagged events.

Data taken during BBA:

two runs.

Data taken during special runs:

µ ∼ 0.05:

int. lumi.:∼65 nb−1,
AFP triggers: ∼2 kHz stored,
main goal: soft diffraction.

µ ∼ 1:

int. lumi.:∼640 nb−1,
AFP triggers: ∼2 kHz stored,
main goal: low-pT jets.

µ ∼ 2:

int. lumi.:∼150 pb−1,
AFP triggers: ∼300 Hz stored,
goals: medium-pT jets, W/Z .

Data taken during standard runs:

AFP was inserted on regular basis,

usually few minutes after stable

beams.
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Data Collected in 2017

This is only ATLAS and AFP recorded – there are no corrections due to
efficiency of subsystems, etc.

ToF trigger and detector were suffered very low efficiency → analysis
should base on proton tagging rather than on ToF background reduction.
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Glance on Analysis: Exclusive Di-lepton Measurement with AFP Tag

Exclusive di-muons, pp → pl−l+p:
proton(s) measured in AFP,

leptons (µ+µ− or e+e−) measured in ATLAS.

2017 data;
√
s = 13; L = 14.6 fb−1.

Powerful background rejection due to AFP:
proton tagging,
kinematics match: proton vs lepton system.

57 (123) candidates in the ee + p (µµ+ p)
final state.

Background-only hypothesis rejected with a
significance exceeding 5σ in each channel.

Measured cross sections:

σee+p = 11.0± 2.6(stat)± 1.2(syst)± 0.3(lumi),

σµµ+p = 7.2± 1.6(stat)± 0.9(syst)± 0.2(lumi).
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Geometric Acceptance in 2022

Low-β∗ Runs

LHCf Runs
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2022 Performance
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Hard Diffractive Processes



Single Diffractive Jet Production

Motivation:

measure cross section and gap survival probability,

search for the presence of an additional contribution from
Reggeon exchange,

check Pomeron universality between ep and pp colliders.

Example: purity and statistical significance for AFP and β∗ = 0.55 m.
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More details in: J. Phys. G: Nucl. Part. Phys. 43 (2016) 110201
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Single Diffractive W /Z Production

Motivation:

measure cross section and gap survival probability,

measure Pomeron structure and flavor composition,

search for charge-asymmetry.

Example: W → lν – purity and stat. significance for AFP and β∗ = 0.55 m.
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W asymmetry studies published in: Phys.Rev. D 84 (2011) 114006
More details in: J. Phys. G: Nucl. Part. Phys. 43 (2016) 110201
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Single Diffractive Charmed Meson Production

Motivation:

measure cross
section and gap
survival probability,

test the
kt-factorization
approach.

Example: purity ALFA and AFP for β∗ = 0.55 and 90 m with and without 1
vertex requirement.

More details in: J. High Energ. Phys. 2017 (2017) 89
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Double Pomeron Exchange Jet Production

Motivation:

measure cross section and
gap survival probability,

search for the presence of
an additional contribution
from Reggeon exchange,

investigate gluon structure
of the Pomeron.
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More details in: J. Phys. G: Nucl. Part. Phys. 43 (2016) 110201
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Double Pomeron Exchange γ+Jet Production

Motivation:

measure cross section and gap survival probability,

sensitive to quark content in Pomeron (at HERA it
was assumed that u = d = s = ū = d̄ = s̄).
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More details in: Phys.Rev. D 88 (2013) 7, 074029
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Double Pomeron Exchange Jet-Gap-Jet Production
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Motivation:

measure cross section and gap survival probability,

test BFKL model.
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More details in: Phys.Rev. D 87 (2013) 3, 034010
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Exclusive Jet Production

Motivation:

cross section
measurement,

constrain other
exclusive productions
(e.g. Higgs).
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Public ATLAS note: ATL-PHYS-PUB-2015-003
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Exclusive Jet Production (Single Tag)

Motivation:

cross section measurement,

constrain other exclusive productions (e.g. Higgs).
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More details in: Eur. Phys. J. C 75 (2015) 320
and Acta Phys. Pol. B 47 (2016) 1745
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HL-LHC: Situation in Tunnel after LS3

According to HL-LHC machine layout only
few locations are possible:

RP1A at
195.5 m

RP1B at
198.0 m

RP2A at
217.0 m

RP2B at
219.5 m

RP3A at
234.0 m

RP3B at
237.0 m

RP3C at
245.0 m

Collimators are also relocated:

TCLPX4 at
136 m

TCL5 at
199 m

TCL6 at
221 m

Studies were done using newest available
HL-LHC optics.

Assumption:
√

s = 14 TeV, β∗ = 15 cm,
crossing angle of 250 µrad with phase: φ = 0,
emittance ε = 2.5 µm·rad.
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HL-LHC: Key Factor – Detector Acceptance

Proton relative energy loss: ξ = 1− Eproton
Ebeam

.

High-ξ limit on acceptance is due to beampipe elements and TCL collimators
between collision point and Roman pot.

Low-ξ limit is due to detector-beam distance, which depends on settings of
collimators (“hierarchy”; machine protection rules).

Yellow area corresponds to > 90% of proton tag chance.

Scattered protons usually (distribution is process-dependent) have pT around 0.2
GeV.

Left: detectors located around 195 m: 0.17 . ξ . 0.31.

Center: detectors located around 217 m: 0.1 . ξ . 0.19.

Right: detectors located around 234 m: 0.06 . ξ . 0.09.
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HL-LHC: Mass Acceptance

Acceptance in ξ translates into the
acceptance in mass (note: process
dependent as integral sensitive to
pT ).

Figure: mass acceptance of all
pots and all pots combinations for
the case of horizontal crossing
angle (φ=0):

“RP1” indicates that both the
protons are tagged at the pot
RP1A and RP1B (similarly for
RP2 and RP3),
“RP1+RP2” means both
protons are tagged at any two of
the four pot locations RP1A,
RP1B, RP2A and RP2B
(similarly “RP1+RP3” and
“RP2+RP3”),
“RP1+RP2+RP3” indicates
that protons are tagged at any
two stations on each side.
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HL-LHC: Physics Case (Very Briefly)

I was asked to ‘squeeze’ physics case and focus on other topics in this
presentation.

For the real overview, please take a look at Physics opportunities of
ATLAS Forward Proton at the High-Luminosity LHC [47 pages, on CDS]:

detailed ATLAS simulations:
WW (fully leptonic) + EFT study, WW (semi-leptonic), ZZ,
various ξ ranges; ToF of 10 and 20 ps,

based on ongoing Run 2 analyses: ALP searches (0.035 < ξ < 0.08;
single-tag),
phenomenological studies:

semi-exclusive tt̄: 0.015 < ξ < 0.15, 10ps,
DM searches: 0.015 < ξ < 0.15, 10ps,
exclusive Higgs in SM and BSM: 0.002 < ξ < 0.20 (420 station considered),
10ps,
exclusive dijets: 0.02 < ξ < 0.12, 10 ps.

AFP is an asset to the ATLAS physics programme by providing additional
handles for kinematic reconstruction and background rejection.

From detailed simulations for single-tag AFP + ITk + HGTD
configurations:

comparable significances observed to those based on central detector only,
higher S/B → may indicate lower background modelling uncertainties.

RP1 + RP3 is optimum if only eight stations can be installed.
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ATLAS Decision

An Initial Design Report for ATLAS Forward Proton Detectors at the
High-Luminosity LHC was sent to a Review Panel called by the ATLAS
Upgrade Coordinator on 22 Sep 2022:

The main review meeting took place on 26/27 September.

The Review Panel report with recommendations was issued on 10
October: the main recommendation to ATLAS is not to approve the
development of an AFP upgrade program for HL-LHC for Run 4, but
to reserve the space for possible Run 5 or beyond projects if this is
possible for the machine w/o constraints or additional cost.

The USC endorsed the Review Panel report and its recommendations at
its meeting on 13 October 2022.

The Executive Board approved the Review Panel report and its
recommendations at its meeting on 17 October 2022.

The result has been reported to and accepted by the HL-LHC
Coordination Group (HLCG) on 18 October 2022.
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Summary

AFP was upgraded during LS2:
production of new tracking modules,
new design of detector flange: Out-of-Vacuum solution for ToF detectors,
new photo-multipliers: address inefficiency issues from Run2 data-taking,

High and low-µ datasets collected in 2016 (one arm), 2017 and 2022:
performance studies close to be finalized,
analyses ongoing.

No Roman Pots in ATLAS during Run 4.
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