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Intro and motivation



Why do we need photoproduction?

Complementary to high-virtuality
photon exchange

⇒ get coherent picture of QCD
production

⇒ measure non-perturbative
QCD effects

Significant QCD background
⇒ improves

signal-to-background ratio

Window into photon physics
⇒ transition from real to virtual

photons
⇒ get data for photon PDFs
⇒ sensitive for New Phyics

signals

production mode at every collider
⇒ can be applied to very

different settings
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Components of photoproduction
simulation



The Weizsäcker-Williams formula 1

Observe that

• for photon virtuality Q2 < Λ2cut, the photo-absorption
cross-section can be approximated by its mass-shell value

• the same domain gives the dominant contribution in
photoproduction

⇒ approximate the cross-section by dσeX = σγX(Q2 = 0)dn, with dn
the photon spectrum

⇒ Calculate dn from DIS matrix element in approximation Q2 → 0.

1formulated in 1934 [1, 2], see [3] for review
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Plotting the spectrum

dn =
αem

2π
dx
x

[(
1+ (1− x)2

)
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)
+ 2m2

ex2
(

1
Q2min

− 1
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(1)

with x the energy fraction, Q2 the virtualities.
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Photon PDFs

(Quasi-)real photons need parton distribution functions!

The following photon PDF libraries have been included in Sherpa:
Glück-Reya-Vogt [4], Glück-Reya-Schienbein [5],
Slominski-Abramowicz-Levy [6], Schuler-Sjöstrand [7, 8]

• All librarys at least for the
real photon in LO

• Some additionally in NLO
• GRS and SaS also for
virtual photon
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The phase space setup
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Figure 1: Schematic sketch of the phase space mappings between the
Equivalent Photon Approximation (EPA) and the Initial State Radiation (ISR),
and the Matrix Element (ME).
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Validation



Some technical remarks

Typical observables are:

• (average) jet transverse energy ET
• pseudo-rapidity η

• cosΘ∗, the angle between the two jets (approximately)
• x±

γ , which is defined as

x±
γ =

∑
j=1,2

E(j) ± p(j)z∑
i∈hfs

E(i) ± p(i)z
(2)

Setup:

• MEPS@LO for 2(+2) jets for LEP data and LO for HERA data
• 1M weighted events including 7-point scale variation, c and b are
massive

• averaged over the available PDF sets
• Disclaimer: preliminary results
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Photoproduction cross-section, exemplified for LEP

Three different hard processes: direct, single-resolved and
double-resolved: σtot = σγγ + 2σjγ + σjj

TEE NEEE

Validated against data from ZEUS, OPAL and L3.
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Sherpa calculations for LEP – preliminary
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Figure 2: Distributions xγ for average transverse jet energy
ĒT ∈ [11GeV, 25GeV] at

√
s = 198 GeV. 10



Sherpa calculations for LEP – preliminary
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Figure 3: Distribution for average jet transverse energy ĒT for LEP at√
s = 198 GeV. 11



Sherpa calculations for LEP – preliminary
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Figure 4: Distribution for jet transverse momentum pT for LEP at
√
s = 206

GeV. 12



Sherpa calculations for HERA at LO – preliminary
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Figure 5: Distribution for jet transverse energy ET for HERA2.
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Sherpa calculations for HERA at LO – preliminary
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Figure 6: Distribution for jet pseudo-rapidity η for HERA2. The drop at η > 1.5
is due to the missing underlying event [9]. 14



Notes on LHC physics



LHC physics

• photon flux for proton beams is implemented
• Full FS spectrum available from the ME generators, incl. photon
PDFs

• current approximation corresponds to elastic production
pp → ppX

• depending on process, the Weizsäcker-Williams approximation
breaks down

• diffractive production would need form factors for proton
diffraction and γ → V transition probability
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Discussion of going NLO



Sherpa calculations for LEP at MC@NLO accuracy – preliminary
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Figure 7: Distribution for jet transverse momentum pT for LEP at
√
s = 206

GeV. Sherpa simulation is at NLO QCD accuracy using MC@NLO where both
photons are resolved. 16



The difficulty of defining NLO

Photons in the initial state show collinear divergences

⇒ introduces ambiguity and double-counting

Example:

NEEE

Is a collinear parton the real correction to γγ → X?
Or remnant of the PDF?
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The difficulty of defining NLO

Cancel the divergences with QED
subtraction terms
Pros:
- Would allow fixed order
calculation
- builds up on known subtraction
schemes
Cons:
- needs QED shower to allow
matching in MC@NLO
- is very involved
- needs PDF to construct
underlying Born process

Create ”subtraction by PDF”, i.e.
make cut at shower cut-off scale
Pros:
- does not need the PDF
- extendible to MC@NLO with
standard shower
- start point for consistent
matching between the three
modes(?)
Cons:
- is very setup-specific
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Next steps and outlook



Next steps

1. Multiple-parton interaction (MPI)

The data (and literature [9]) suggests that multi-parton interaction
are non-negligible!

⇒ need to include an estimator for the number of multiple
interaction

2. Extend for A

⇒ Needs form factors for each nucleus

3. Q2 > 0 and non-collinear kinematics

leave the Weizsäcker-Williams Q2 → 0 approximation

⇒ extend VMD model?
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Next step: extension to virtual photons: VMD-typemodel [10, 11]

Vector-Meson Dominance model – needed for stringent description
of event characteristics

Photonic interaction can be either bare or through fermionic
fluctuations:

• leptonic → negligible for jet production
• ’hard’ quarks → p2⊥ ∼ Q2 > 0 → short-lived and perturbatively
calculable

• ’soft’ quarks → p2⊥ ∼ Q2 ≈ 0 → long-lived and
non-perturbative → hadron-hadron physics

(Q2 – virtuality)

20



Conclusion



Conclusion

• Photoproduction is an important ingredient for collider
phenomenology at high precision

• Simulation in Sherpa validated against LEP and HERA data
• Uncertainties in QCD observables dominated by photon PDFs
• Deviations from data can be attributed to missing MPI model for
the photon

• Extension to NLO QCD needs some attention, but is feasible

Thank you for the attention!
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