

THE

Dilepton production in association with forward protons in AFP

Savannah Clawson

The University of Manchester

Photon-induced processes 3rd-4th Nov. 2022, IPPP, Durham

Context

PREVIOUS MEASUREMENTS OF $\gamma\gamma \rightarrow ll$ in proton-proton collisions

- Previous measurements of γγ→II by the ATLAS Collaboration were performed without proton-tagging
 - 7 TeV: [PLB 749 (2015) 242-261]
 - 13 TeV: [PLB 777 (2018) 303]
- CMS + TOTEM reported proton-tagged dielectron (dimuon) production with 2.6σ (4.0 σ) significance at 13 TeV but no cross-sections were measured: [JHEP 07 (2018) 153]

THIS TALK:

- Observation of forward proton scattering in association with lepton pairs produced via photon fusion in ATLAS 13 TeV data [PRL 125 (2020) 261801]
- Fiducial cross-section measurement
- Additional figures and tables <u>here</u>

Many thanks to Jesse and Lydia, whose beautiful slides/diagrams I have shamelessly stolen throughout this talk

Savannah Clawson

The signal process

Savannah Clawson

Lepton 210 m Photon-induced processes, IPPP | savannah.ellen.clawson@cern.ch

Combinatorial background

2017 dataset with AFP data quality selections = 14.7 fb⁻¹

AFP:

- Proton object reconstructed in at least one station of AFP
- Proton matched to dilepton system if $|\xi_{AFP} \xi_{II}| < 0.005$

Reminder: $\xi_{AFP} = 1 - E_{reco}/E_{beam}$

Central detector:

- Expect leptons to be produced back-to-back
 - Small p_⊤ⁿ < 5 GeV</p>
 - Small acoplanarity $A_{\phi}^{\ell} = 1 |\Delta \phi_{\ell}| / \pi < 0.01$
- Dilepton triggers: two electrons with $p_T > 18 \text{ GeV}$ or two muons with $p_T > 15 \text{ GeV}$
- Dilepton mass > 20 GeV and outside Z-peak (∉ [70, 105] GeV)
- No tracks within ± 0.5 mm window of dilepton vertex

Direct: AFP spectrometer measures ξ_{AFP}

Indirect: central ATLAS measures $\xi_{\rho\rho}$

Measure lepton kinematics

$$\xi_{\ell\ell}^{\pm} = \frac{m_{\ell\ell}}{\sqrt{s}} e^{\pm y_{\ell\ell}}$$

Infer proton kinematics*

- Exclusivity selection: No tracks within ± 0.5 mm window of dilepton vertex
- However, the exclusivity selection is very sensitive to the number of interactions per bunch crossing = pileup

- Size of luminous region differs in MC and data
- Track multiplicity modelling in both pileup and underlying event difficult to model

See γγ→WW observation: [PLB 816 (2021) 136190]

 Focus on data-driven methods to measure signal efficiency and estimate background yields

Savannah Clawson

Several analysis specific methods were introduced:

- Many AFP systematics calculated for the first time, including in situ alignment calibration
- Tag-and-probe determination of the AFP reconstruction efficiency
- Combinatorial background estimated from data-driven event mixing + normalised from sideband fit

- Orthogonal data control sample created by switching the acoplanarity selection: A^{ll} > 0.01
- Mixed-event data sample constructed by randomly pairing each:
 - nominal measured ξ_{t} value, passing AFP acceptance $\xi_{AFP} \in [0.02, 0.12]$
 - with 100 values of ξ_{AFP} from the control sample
- The background normalisation is determined from a single-bin fit to the sideband region with $|\xi_{AFP} \xi_{tt}| > 0.005$
- Background estimation validated in Z-peak region:

The power of proton tags: signal to background

discrimination, even on the Z-peak!

Savannah Clawson

Photon-induced processes, IPPP

9 savannah.ellen.clawson@cern.ch

Savannah Clawson

Matched candidates

Savannah Clawson

Photon-induced processes, IPPP

Results

< 0.12

).02 < ξ

< 0.08

0.035 < ξ

The background hypothesis was rejected with a significance of

9.7σ in the ee and

13.0 σ in the $\mu\mu$ channel

Fiducial cross-sections measured in a restricted acceptance to be

11.0 ± 2.6 (stat) ± 1.2 (syst) ± 0.3 (lumi) fb in the ee and

7.2 ± 1.6 (stat) ± 0.9 (syst) ± 0.2 (lumi) fb in the $\mu\mu$ channel

Why?

WHY PROTONS?

- Access to higher diphoton invariant mass than heavy ion collisions
- γγ→II used to extract ratio of exclusive to dissociative events in γγ→WW analysis

- Method used in γγ→WW analysis implicitly accounts for proton soft survival
- Large uncertainties associated to transferability between γγ→II to γγ→WW process
- Applicability discussed by S. Bailey, L. Hardland-Lang in [arxiv:2201.08403]

WHY PROTON TAGGING?

- Double-tag is an independent measure of diphoton mass
- Theoretical predictions have large associated uncertainties due to proton rescattering effects
 - Quantified by soft-survival factors
 - Not always well constrained, particularly at high masses
- Forward proton tagging allows direct measurement of proton soft survival
- Central detector measurements can only indirectly infer soft survival probability

• Comparison to theoretical predictions with different soft survival models:

$\sigma_{\rm herwig+lpair} \times S_{\rm surv}$	$\sigma_{ee+p}^{\mathrm{fid.}}$ (fb)	$\sigma^{\rm fid.}_{\mu\mu+p}$ (fb)	
$S_{\text{surv}} = 1$ S_{surv} using Refs. [33, 34]	15.5 ± 1.2 10.9 ± 0.8	13.5 ± 1.1 9.4 ± 0.7	theory predict split into exclu
SUPERCHIC 4 [97]	12.2 ± 0.9	10.4 ± 0.7	backup
Measurement	11.0 ± 2.9	7.2 ± 1.8	-

- mll-dependent scaling applied to Herwig+LPAIR yields, according to Ref. [34]
- LPAIR yields scaled down by a further 15% to account for lower soft survival probability in single-diss events, according to Ref. [33]
- Alternative SuperChic4 predictions include full kinematic dependence on survival factors for exclusive and dissociative processes

[33] arXiv:1601.03772, [34] arXiv:1410.2983, [97] arXiv.2007.12704

WHAT?

- ATLAS observed dilepton production in association with forward protons in AFP
- Cross-sections measured in fiducial volume

WHY?

- Proton tagging allows direct measurement of proton soft survival, as well as separation of exclusive and dissociative processes
- Many AFP detector systematics defined for the first time

WHAT NEXT?

- Result limited by stat. uncertainty expect much higher integrated lumi for AFP in Run 3
- AFP time-of-flight measurements in Run 3, allows further background suppression
 - Vital in analyses where there is missing energy, e.g. BSM processes, $\gamma\gamma \rightarrow WW$

• General challenges:

- Modelling of proton soft survival
- Impact of high pileup on analysis selections
- Modelling of track multiplicity in pileup and the underlying event

Backup

SIGNAL

- Full-sim exclusive signal samples produced using Herwig7
- Fast-sim single-dissociative signal was generated using LPAIR4.0, with proton dissociation modeled using the Brasse et al. and Suri-Yennie structure functions interfaced with jetset7.408.

DETECTOR

 AFP response is modelled by a fast simulation, where a Gaussian smearing is applied to track positions based on the AFP spatial resolution

BACKGROUNDS

Background estimates fully data-driven, cross-checked with MC

Simulation details

Process	Generator	Slice/Filter	DSID
$Z/\gamma^* \rightarrow ee$	POWHEG+PYTHIA8	$m_{\ell\ell} > 6 \text{ GeV}$	361664, 361665, 361106
$Z/\gamma^* \rightarrow \mu\mu$	POWHEG+PYTHIA8	$m_{\ell\ell} > 6 \text{ GeV}$	361666, 361667, 361107
$Z/\gamma^* \to \tau \tau$	POWHEG+PYTHIA8	$m_{\ell\ell} > 6 \text{ GeV}$	361668, 361669, 361108
Alt Z/at > as	Sumper 2.2.1	$m_{\ell\ell} \in [10, 40] \text{ GeV}$	364204-364209
All. $Z/\gamma \rightarrow ee$	SHERPA 2.2.1	$m_{\ell\ell} > 40 \text{ GeV}$	364114-364127
Alt $Z/\alpha^* \rightarrow \mu\mu$	Sherpa 2.2.1	$m_{\ell\ell} \in [10, 40] \text{ GeV}$	364198-364203
And $Z/Y \rightarrow \mu\mu$		$m_{\ell\ell} > 40 \text{ GeV}$	364100-364113
Alt Z/at > TT	Surppy 2.2.1	$m_{\ell\ell} \in [10, 40] \text{ GeV}$	364210-364215
All $Z/\gamma \rightarrow t$	SHERPA 2.2.1	$m_{\ell\ell} > 40 \text{ GeV}$	364128-364141
tī	POWHEG+PYTHIA8	Dilepton filtered	410472
t + W	POWHEG+PYTHIA8	Dilepton filtered	410648, 410649
t t-channel	POWHEG+PYTHIA8	Leptonic decay	410658, 410659
t s-channel	POWHEG+PYTHIA8	Leptonic decay	410644, 410645
D.1	Sherpa 2.2.2	1 to 4 <i>l</i>	364250, 364253-364255
Dibosoli		2 to 4ℓ 'lowMllPtComplement'	364288-364290
Exclusive $pp \to p(\gamma \gamma \to XX)$)p		
$\gamma\gamma \rightarrow ee$	HERWIG7	'LeptonFilter' $m_{\ell\ell} > 20$	363749-363752
$\gamma\gamma \rightarrow \mu\mu$	HERWIG7	'LeptonFilter' $m_{\ell\ell} > 20$	363753-363756
$\gamma\gamma \rightarrow \tau\tau$ (35 mm beamspot)	HERWIG7	'LeptonFilter' $m_{\tau\tau} > 20$	363757-363760
$\gamma\gamma \to WW$	HERWIG7	'LeptonFilter'	363761
Single dissociative $pp \rightarrow p(\gamma)$	$\gamma \to XX)p^*$		
$\gamma\gamma \rightarrow ee$	LPAIR	'LeptonFilter' $m_{\ell\ell} > 18$	363694-363696
$\gamma\gamma o \mu\mu$	LPAIR	'LeptonFilter' $m_{\ell\ell} > 6$	363697-363700
Double dissociative $pp \rightarrow p^*$	$\gamma \gamma \to X X) p^*$		
$\gamma\gamma \rightarrow ee$	Рутніа8	'LeptonFilter' $m_{\ell\ell} > 18$	363672-363674
$\gamma \gamma \rightarrow \mu \mu$	Рутніа8	'LeptonFilter' $m_{\ell\ell} > 6$	363675-363678
$\gamma\gamma \rightarrow \tau\tau$	PYTHIA8	'LeptonFilter' $m_{\ell\ell} > 6$	363679-363682

Savannah Clawson

Photon-induced processes, IPPP

Dominant AFP systematics are the global alignment (±300 µm), and the uncertainty on the beam crossing angle (±50 µrad)

- Dominant central detector systematic is the uncertainty on the Ntrack = 0 selection, calculated by comparing the exclusive efficiency calculated using the data-driven method to directly measuring around the dilepton vertex
- The uncertainty on the background modelling comes from limited stats in the sideband regions, kinematics of the orthogonal sample selection, number of pairs sampled and pileup dependence

Forward detector Global alignment Beam optics Resolution and kinematic matching 3 Track reconstruction efficiency Alignment rotation Clustering and track-finding procedure Central detector Track veto efficiency Pileup modeling Muon scale and resolution Muon trigger, isolation, reconstruction efficiencies Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Source of systematic uncertainty	Impact
Global alignment Beam optics Resolution and kinematic matching 3 Track reconstruction efficiency Alignment rotation Clustering and track-finding procedure Central detector Track veto efficiency Pileup modeling Pileup modeling Muon scale and resolution Muon scale and resolution Beackground modeling Beackground modeling Luminosity	Forward detector	
Beam optics 3 Resolution and kinematic matching 3 Track reconstruction efficiency 4 Alignment rotation 2 Clustering and track-finding procedure 2 Central detector 7 Track veto efficiency 9 Pileup modeling 2 Muon scale and resolution 4 Muon trigger, isolation, reconstruction efficiencies 5 Electron trigger, isolation, reconstruction efficiencies 5 Electron scale and resolution 8 Background modeling 5 Luminosity 5	Global alignment	6%
Resolution and kinematic matching 3 Track reconstruction efficiency Alignment rotation Clustering and track-finding procedure Central detector Track veto efficiency Track veto efficiency Pileup modeling Muon scale and resolution Muon trigger, isolation, reconstruction efficiencies Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Beam optics	5%
Track reconstruction efficiency Alignment rotation Clustering and track-finding procedure Central detector Track veto efficiency Pileup modeling Muon scale and resolution Muon scale and resolution Muon scale and resolution Background modeling Background modeling Luminosity	Resolution and kinematic matching	3 - 5%
Alignment rotation Clustering and track-finding procedure Central detector Track veto efficiency Pileup modeling Muon scale and resolution Muon trigger, isolation, reconstruction efficiencies Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Track reconstruction efficiency	3%
Clustering and track-finding procedure Central detector Track veto efficiency Pileup modeling 2 Muon scale and resolution Muon trigger, isolation, reconstruction efficiencies Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Alignment rotation	1%
Central detector Track veto efficiency Pileup modeling 2 Muon scale and resolution Muon trigger, isolation, reconstruction efficiencies Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Clustering and track-finding procedure	< 1%
Track veto efficiency Pileup modeling 2 Muon scale and resolution Muon trigger, isolation, reconstruction efficiencies Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Central detector	
Pileup modeling 2 Muon scale and resolution 2 Muon trigger, isolation, reconstruction efficiencies 2 Electron trigger, isolation, reconstruction efficiencies 2 Electron scale and resolution 3 Background modeling 2 Luminosity 2	Track veto efficiency	5%
Muon scale and resolution Muon trigger, isolation, reconstruction efficiencies Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Pileup modeling	2 - 3%
Muon trigger, isolation, reconstruction efficiencies Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Muon scale and resolution	3%
Electron trigger, isolation, reconstruction efficiencies Electron scale and resolution Background modeling Luminosity	Muon trigger, isolation, reconstruction efficiencies	1%
Electron scale and resolution Background modeling Luminosity	Electron trigger, isolation, reconstruction efficiencies	1%
Background modeling Luminosity	Electron scale and resolution	1%
Luminosity	Background modeling	2%
	Luminosity	2%

Impact on cross-section

Two approaches used to determine the track veto efficiency systematic:

- 1. Data-driven (nominal): Use method developed in the exclusive WW team to sample the pileup distribution
- 2. MC-driven: vary beamspot width from 42mm to 35mm as a cross-check

track veto efficiencies:

μμ	Data-driven	Lepton vertex
data17	39.82 ± 0.03	-
MC (42 mm)	44.5 ± 0.2	42.6 ± 0.3
ee	Data-driven	Lepton vertex
data17	40.85 ± 0.04	-
MC (42 mm)	44.6 ± 0.3	38.4 ± 0.4

 $k_{\text{excl}} = \epsilon_{\text{data}} / \epsilon_{\text{MC}} = 0.894 \text{ (5\% syst)}$

Difference in efficiencies between data/MC applied as a scale factor, $k_{excl'}$ to MC Systematic taken from <u>closure</u> of data-driven method with efficiency of lepton vertex in MC

Increase in non-closure in ee channel known and understood

Savannah Clawson

IN SIMULATION:

- No full-sim AFP simulation available
- Parametrised Gaussian smearing of the kinematics of the truth protons based on SiT resolution
- No pileup included in AFP fast simulation. Signal MC has at most one proton per side
- Proton transport through LHC lattice simulated with MAD-X and parametrised response used to convert measured position to energy loss

IN DATA:

- Proton spatial position measured in AFP .
- Invert parametrisation from proton transport simulation to calculate ξ_{AED} .

Savannah Clawson

Global alignment

- Beam central position is determined by beam-based alignment and beam-position monitoring techniques
- Residual differences in AFP sensor locations calculated in-situ with dimuon candidates with very high purity selections

Photon-induced processes, IPPP

Proton reconstruction efficiency

- Ě
- Tag-and-probe method developed to calculate proton reconstruction efficiencies per AFP station for the first time

- FAR station efficiencies lower due to proton showering between stations
- Double-station reco efficiency quoted as 0.92+0.02, independent of side

• Comparison of measured cross-section to theoretical predictions with different soft survival models, here split into exclusive and single-dissociative predictions

	$\sigma_{ee+p}^{\text{fid.}}$ [fb]	$\sigma^{\text{fid.}}_{\mu\mu+p}$ [fb]
Measurement	11.0 ± 2.9	7.2 ± 1.8
Predictions		
$S_{ m surv} = 1$		
HERWIG+LPAIR	15.5 ± 1.2	13.5 ± 1.1
Herwig	9.3 ± 0.7	8.0 ± 0.6
LPAIR	6.2 ± 1.1	5.5 ± 0.9
$S_{\rm surv}$ using Refs. [31,30]		
Herwig+Lpair	10.9 ± 0.8	9.2 ± 0.7
Herwig	7.0 ± 0.5	5.9 ± 0.4
LPAIR	3.9 ± 0.7	3.4 ± 0.6
SuperChic 4 [94]		
Exclusive + single-dissociative	12.2 ± 0.9	10.4 ± 0.7
Exclusive	8.6 ± 0.6	7.3 ± 0.5
Single-dissociative	3.6 ± 0.6	3.1 ± 0.5

[30] arXiv:1601.03772, [31] arXiv:1410.2983, [94] arXiv.2007.12704

Savannah Clawson

	Number of events	
Requirement	$pp \rightarrow p(\gamma\gamma \rightarrow ee)p$	$pp \to p(\gamma\gamma \to \mu\mu)p$
$\sigma \times \mathcal{L}$	44790	44740
$\sigma imes \mathcal{L} imes \epsilon_{ ext{filter}}$	11570	11560
$\sigma imes \mathcal{L} imes \epsilon_{ ext{filter}} imes w_{ ext{SF}}$	11440	11190
Exactly two signal leptons	1217	3628
Trigger matched	968	2641
Opposite charge	964	2641
Same flavor	964	2641
$p_{\mathrm{T}}^{\ell\ell} < 5 ~GeV$	931	2594
$A_{\phi}^{\ell\ell} < 0.01$	913	2520
$N_{\rm tracks}^{0.5 \ \rm mm} = 0$	378	1138
$m_{\ell\ell} > 20 ~GeV$	378	1138
$m_{\ell\ell} \not\in [70, 105] \; GeV$	283	960
$\xi_{\ell\ell}^{\rm A} \in [0.02, 0.12] \text{ or } \xi_{\ell\ell}^{\rm C} \in [0.02, 0.12]$	69.8	155
$\xi_{\ell\ell}^{\rm A} \in [0.035, 0.08] \text{ or } \xi_{\ell\ell}^{\rm C} \in [0.035, 0.08]$	18.2	28.9
$ \xi_{\rm AFP} - \xi_{\ell\ell} < 0.005$	17.8	27.8

ATLAS Forward Proton (AFP)

- · Each station houses a silicon tracker (SiT) with four planes of edgeless silicon pixel sensors
- The sensors have 336 × 80 pixels with area 50 × 250 µm²
- Spatial resolution of σx = 6 μm

"A TeV spectrometer"

Savannah Clawson

Photon-induced processes, IPPP

AFP interplane alignment

- Offsets and rotations of silicon planes relative to each other within each station
- Much smaller effect than global alignment (all corrections within global alignment uncertainty)

Cluster to edge distance is the same for all planes

In reality

Cluster positions relative to plane edge can be different before interplane alignment

AFP potential

Savannah Clawson

Photon-induced processes, IPPP

Savannah Clawson

Photon-induced processes, IPPP