Observation of Photon-Induced *W* Boson Pair Production

Photon-induced processes, Durham

Philip Sommer CERN 04.11.2022

The Standard Model

- The Standard Model describes the fundamental constituents of matter and their interactions
 - strong and electroweak (EW) interaction
 - Rich variety of interactions derived from a rather simple set of symmetries
- Self-interactions of electroweak gauge bosons
 - Quantum corrections at EW mass scale
 - Large effects at highest energies

SU(3) _C ×	SU(2) _L ×	U(1) _Y
colour red, green, blue	weak isospin $I_3 = 0, \pm \frac{1}{2}$	weak hypercharge Y
8 gluons	$W^1, W^2, W^3 \rightarrow W^2$	Β +, W ⁻ , Z, γ

Production of W^+W^- from photons uniquely sensitive to yyWW coupling

Photon-induced Processes

Lead-lead vs proton-proton:

- Photon luminosity scales with ~ Z⁴
- Maximum photon energy $\sim \gamma/R$ (uncertainty principle)
- → Use *pp* data to produce particles at electroweak mass scales or higher

Signal predictions:

► This analysis was (almost) entirely relying on elastic $\gamma\gamma \rightarrow WW$ simulation

Analysis in a Nutshell

Experimental Signature:

- exactly one electron and muon with opposite electric charge
- ▶ p_T(*ll*) > 30 GeV, m_{ℓℓ} > 20 GeV
- no charged particles associated with the primary interaction vertex

Experimental Challenges:

- In a typical ATLAS event we have a primary interaction vertex, and particles from the hard interaction, the proton fragmentation and additional *pp* interactions
- The analysis requires detailed understanding of:
 - vertex reconstruction ●
 - modelling of signal
 - the pileup density and multiplicity
 - underlying event of background processes

Track Selection

- Tracks are the largest consumer of CPU in ATLAS reconstruction, and of disk space
- Only tracks with p_T > 500 MeV are available for analysis
- Tracks for analysis are selected with d₀ < 1 mm and z₀ < 1 mm</p>

Vertex Reconstruction

- Usually, the interaction vertices are reconstructed from charged-particle tracks in the inner detector
- The vertex with the largest $\sum p_T^2$ is chosen as the primary vertex
- → Not optimal for photon-induced processes
- Instead, leptons are used to reconstruct the interaction vertex:

$$z_{\rm vtx}^{\ell\ell} = \frac{z_{\ell_1} \sin^2 \theta_{\ell_1} + z_{\ell_2} \sin^2 \theta_{\ell_2}}{\sin^2 \theta_{\ell_1} + \sin^2 \theta_{\ell_2}}$$

where $\sin^{-1} \theta_{\ell}$ parametrises the uncertainty of the measured z_{ℓ} position

- This vertex is unbiased by close-by pileup tracks
- and *more efficient* than the usual $\sum p_T^2$ criterion

Pileup Challenge

- Between 2015 and 2018 ATLAS recorded 139 fb⁻¹ of pp collision data
 - With an average of 33.7 collisions per bunch crossing
 - With varying beam conditions
- A pileup vertex in the vicinity of the γγ → WW vertex causes the event to be dropped
- Measurement relies on the correct description of the multiplicity and density of pileup tracks

Pileup Modelling

- The probability of finding a pileup track within 1 mm of the vertex is 47.4%
- \rightarrow Large source of efficiency loss
- Measured from several z-positions in Drell-Yan events, weighted with beam-spot distribution

 Small differences between data and simulation are used as a correction, after correcting the beam-spot size

Background Modelling

- An accurate estimation of the backgrounds relies on the modelling of the underlying event
- Dominated by low-p_T, non-perturbative physics

- The number of charged particles is measured in Drell-Yan events
- Double differentially in n_{ch} and $p_T(ll)$
- Separately for every parton shower models used in the analysis

Modelling of $qq \rightarrow WW$ Production

- ▶ Underlying event corrections derived in Drell-Yan events are used to correct $qq \rightarrow VV$ events, as a function of n_{ch} and $p_T(VV)$
- Pythia8 eigentune vars., Herwig7 and Sherpa parton-shower models agree within 1% ... except for n_{tracks} = 0

Differences are the largest source of uncertainty in the measurement (with the $qq \rightarrow VV$ yield estimated from the average and envelope of the highest and lowest number)

Signal Modelling

- ► No complete simulation of $\gamma\gamma \rightarrow WW$ available (at least not at the time :-))
- In particular, no rescattering of the proton
- \rightarrow Measure missing components in $\gamma\gamma \rightarrow \ell\ell$
- Using elastic contributions for signal predictions, only

$$\beta_{\gamma\gamma \to \ell\ell} = \frac{N_{data} - N_{bkg}}{N_{\gamma\gamma \to \ell\ell}^{elastic}} = 3.59 \pm 0.15 \text{ (stat.+syst.)}$$

• Applicability to $\gamma\gamma \rightarrow WW$ ensured with $m_{\ell\ell} > 160 \text{ GeV} \sim 2 \cdot m_W$ (and a generous uncertainty)

The Observation

- Signal extracted in a profile likelihood fit, using
 - ▶ four bins with $p_T(ll) < 30$ GeV or $p_T(ll) > 30$ GeV, and $1 \le n_{\text{tracks}} \le 4$ or $n_{\text{tracks}} = 0$
 - one bin for the signal modelling correction, $n_{\text{tracks}} = 0$ and $m_{\ell\ell} > 160 \text{ GeV}$
 - ▶ four free parameters, the normalisations of $\gamma\gamma \rightarrow WW, \gamma\gamma \rightarrow \ell\ell$, Drell-Yan and $qq \rightarrow WW$
- 307 candidate events are selected in data where 127 are expected from background

The background-only hypothesis is rejected with 8.4 σ (6.7 σ expected)

Fiducial Cross Section

• The fiducial cross section ($n_{ch} = 0$ + kinematic requirements) is measured to be

 $\sigma_{\mathsf{meas.}} =$ 3.13 \pm 0.31 (stat.) \pm 0.28 (syst.) fb

- Largest sources of uncertainty
 - Stat. uncertainties in the backgrounds
 - Background modelling
 - Signal modelling (dissociative contributions)
- Compared to our "expectation"

$$\sigma_{\text{elastic}} \cdot \beta_{\gamma\gamma \rightarrow \ell\ell} = 2.34 \pm 0.27 \text{ fb}$$

A standalone prediction from Madgraph with	
MMHT2015qed PDF	

Source of uncertainty	Impact [%]
Experimental	
Track reconstruction	1.1
Electron energy scale and resolution, and efficiency	0.4
Muon momentum scale and resolution, and efficiency	0.5
Misidentified leptons	1.5
Background, statistical	6.7
Modelling	
Pile-up modelling	1.1
Underlying-event modelling	1.4
Signal modelling	2.1
WW modelling	4.0
Other backgrounds	1.7
Luminosity	1.7
Total	8.9

 $\sigma_{\text{theo.}} = 4.3 \pm 1.0 \text{ (scale)} \pm 0.12 \text{ (PDF) fb}$

This value needs to be corrected for rescattering effects ranging between 0.65 and 0.82

Where AFP Comes In

Forward proton tagging allows reconstruction of the *WW* system in $\gamma\gamma \rightarrow WW$ events

$$W = \sqrt{s\xi_1\xi_2} = m_{WW}$$

- With acceptance of 300 GeV < W < 1.5 TeV of double-tagged events
- \rightarrow Increased sensitivity in EFT interpretations

- Dedicated background estimation techniques allow reduction of dominant source of systematic uncertainty
- Demonstrated in PRL 125 (2020) 261801

Prospects for Run-4

with ITk with a run-2 like low- p_T option

	Run 2 ID	ITk (HL-LHC baseline)		
	$ \eta < 2.5$	$ \eta < 2.0$	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$
Min. p_T [MeV]	500	900	400	400
Min. number of Si hits	7	9	8	7

- The production of two W bosons from two photons has been observed
- As it proceeds through quartic gauge couplings, it confirms a longstanding Standard Model prediction
- Progress in experimental techniques allow use of high pileup pp data
- Use of AFP would allow to reconstruct the WW system and improve on background uncertainties
- Measurement published in Phys. Lett. B 816 (2021) 136190

Backup

	Signal region		Control regions	
n _{trk}	$n_{trk} = 0$		$1 \le n_{\text{trk}} \le 4$	
$p_{\mathrm{T}}^{e\mu}$	> 30 GeV	< 30 GeV	> 30 GeV	< 30 GeV
$\gamma\gamma \rightarrow WW$	174 ± 20	45 ± 6	95 ± 19	24 ± 5
$\gamma\gamma \rightarrow \ell\ell$	5.5 ± 0.3	39.6 ± 1.9	5.6 ± 1.2	32 ± 7
Drell-Yan	4.5 ± 0.9	280 ± 40	106 ± 19	4700 ± 400
$qq \rightarrow WW$ (incl. gg and VBS)	101 ± 17	55 ± 10	1700 ± 270	970 ± 150
Non-prompt	14 ± 14	36 ± 35	220 ± 220	500 ± 400
Other backgrounds	7.1 ± 1.7	1.9 ± 0.4	311 ± 76	81 ± 15
Total	305 ± 18	459 ± 19	2460 ± 60	6320 ± 130
Data	307	449	2458	6332

