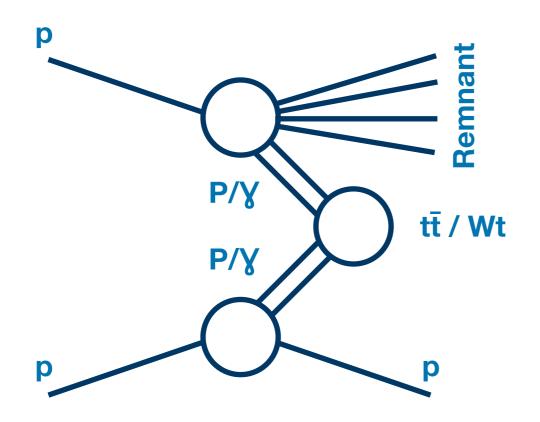
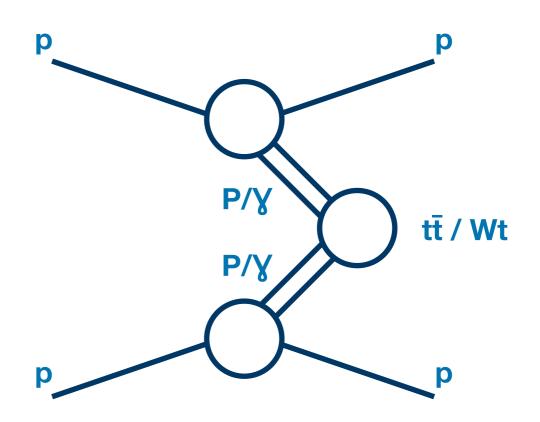

Top Processes

In Photon-Induced Collisions

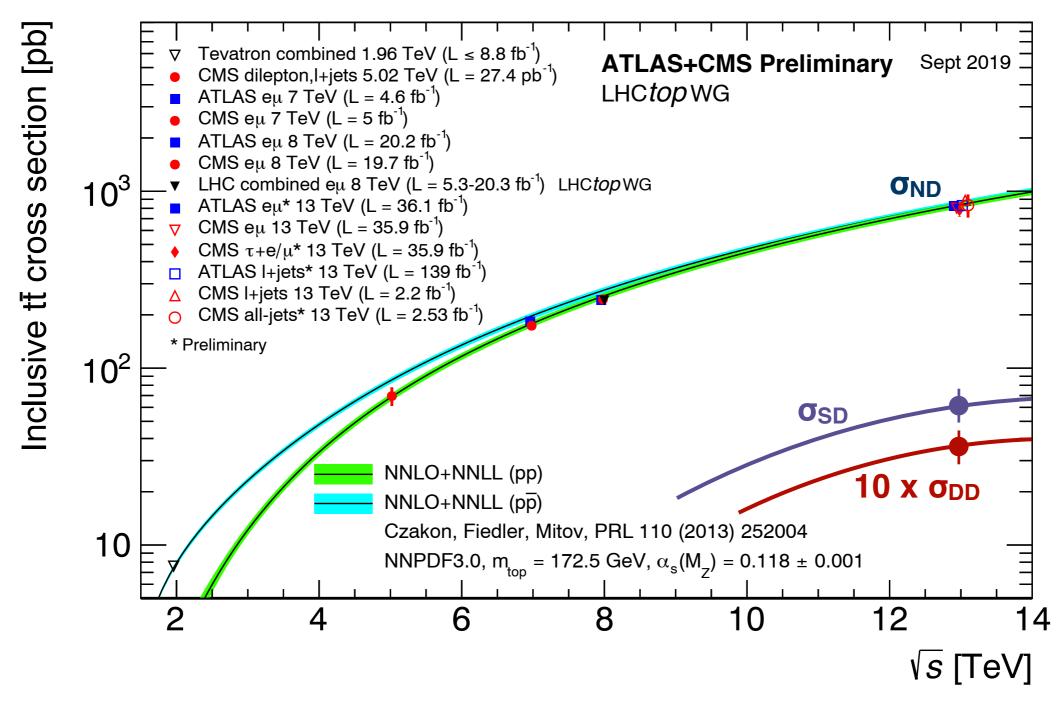




Semi-elastic

- Many different processes with one or two intact protons and top quarks:
 - Semi-elastic tt and Wt (via γ or pomeron)
 - Fully-elastic(diffractive) tt and Wt (via γ or pomeron)

P D B Collins and T P Spiller 1984 J. Phys. G: Nucl. Phys. 10 1667


$m_{\rm t}({ m GeV})$	$\bar{p}p \to T\bar{T}X$						
	<u> </u>	σB (nb)					
	σ(nb)	$k_{\rm T} > 5~{ m GeV}$	8 GeV	15 GeV	20 GeV		
25	150	9	3.5	0	0		
35	72	5.6	4.0	0.1	0		
45	30	3.0	2.0	0.7	6×10^{-2}		

 Well established idea, literature goes back more than 40 years...

Photon-induced tops

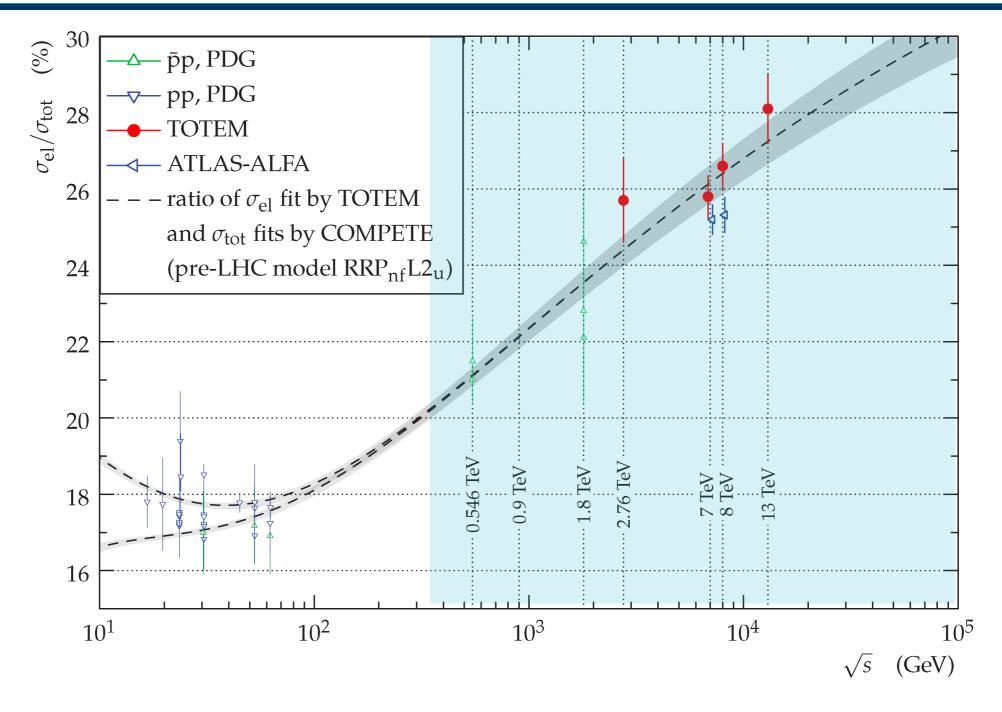
 Cross-sections are very small compared to nondiffractive.

Generator Setting	$\sigma_{(p\mathbb{P} \to t\bar{t})}$ [pb]	$\sigma_{(\gamma p \to t\bar{t})}$ [pb]	$\sigma_{(\gamma \mathbb{P} \to t\bar{t})}$ [pb]	$\sigma_{(\mathbb{PP} o t ar{t})} \; [ext{pb}]$	$\sigma_{(\gamma\gamma \to t\bar{t})} [\mathrm{pb}]$
SuperChic (isurv $= 1$)	_	_	_	$1.22(1)\cdot 10^{-5}$	$2.05(2) \cdot 10^{-4}$
(isurv = 2)	_	_	_	$3.21(2) \cdot 10^{-5}$	$2.06(1) \cdot 10^{-4}$
(isurv = 3)	_	_	_	$2.05(1)\cdot 10^{-5}$	$2.05(1) \cdot 10^{-4}$
(isurv = 4)	_	_	_	$1.59(1) \cdot 10^{-5}$	$2.06(1) \cdot 10^{-4}$
(sfaci = false)	_	_	_	$1.73(1) \cdot 10^{-3}$	$2.77(2) \cdot 10^{-4}$
$\operatorname{MadGraph}$	_	1.23	_	_	$3.33 \cdot 10^{-4}$
PYTHIA (MPI: unchecked)	90.5(1)	1.45	$1.26(6)\cdot 10^{-1}$	_	$4.56(2)\cdot 10^{-4}$
(MPI: checked)	5.14(5)	1.46	$1.27(6) \cdot 10^{-1}$	_	$4.57(2)\cdot 10^{-4}$
$\mathrm{FPMC}[7]$	_	_	$5.2 \cdot 10^{-2}$	$2.84 \cdot 10^{-2}$	$3.4 \cdot 10^{-4}$

Fully-elastic cross-sections are ~0.1 (1) fb for EW (QCD) (not including survival factor).

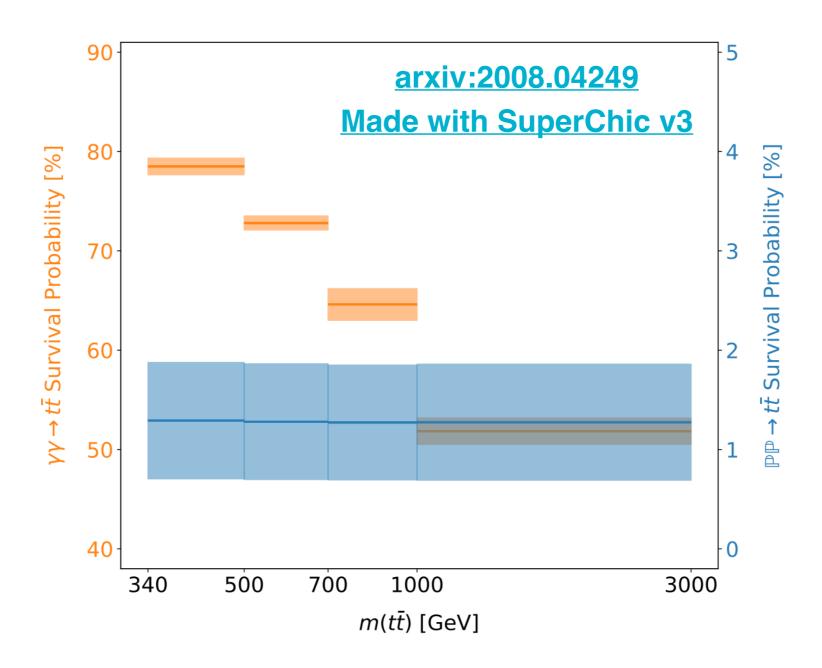
Generator Setting	$\sigma_{(p\mathbb{P} o t \bar{t})} \; [ext{pb}]$	$\sigma_{(\gamma p \to t\bar{t})}$ [pb]	$\sigma_{(\gamma \mathbb{P} \to t\bar{t})}$ [pb]	$\sigma_{(\mathbb{PP} o tar{t})} \; [ext{pb}]$	$\sigma_{(\gamma\gamma o tar{t})} \; [ext{pb}]$
SuperChic (isurv $= 1$)	_	_	_	$1.22(1)\cdot 10^{-5}$	$2.05(2) \cdot 10^{-4}$
(isurv = 2)	_	_	_	$3.21(2) \cdot 10^{-5}$	$2.06(1) \cdot 10^{-4}$
(isurv = 3)	_	_	_	$2.05(1)\cdot 10^{-5}$	$2.05(1) \cdot 10^{-4}$
(isurv = 4)	_	_	_	$1.50(1) 10^{-5}$	$2.06(1)$ 10^{-4}
(sfaci = false)	_	_	-	$1.73(1) \cdot 10^{-3}$	$2.77(2) \cdot 10^{-4}$
$\operatorname{MadGraph}$	_	1.23	_		3.33 · 10 ·
PYTHIA (MPI: unchecked)	90.5(1)	1.45	$1.26(6) \cdot 10^{-1}$	_	$4.56(2)\cdot 10^{-4}$
(MPI: checked)	5.14(5)	1.46	$1.27(6) \cdot 10^{-1}$	_	$4.57(2)\cdot 10^{-4}$
FPMC[7]	_	_	$5.2 \cdot 10^{-2}$	$2.84 \cdot 10^{-2}$	$3.4 \cdot 10^{-4}$

Fully-elastic cross-sections are ~0.1 (1) fb for EW (QCD) (not including survival factor).

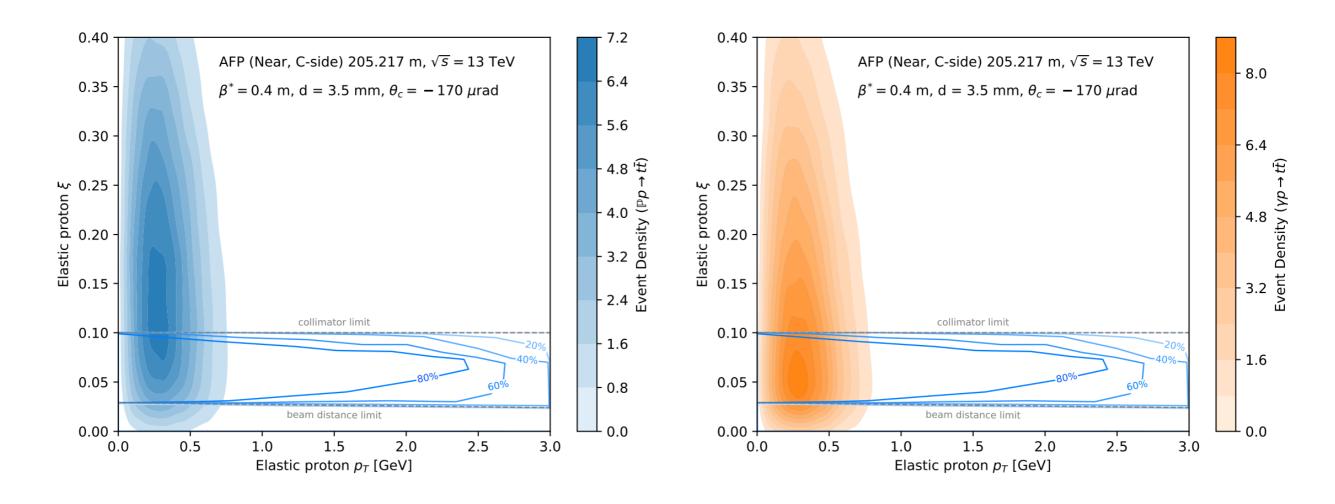


Generator Setting	$\sigma_{(p\mathbb{P} o t \bar{t})}$ [pb]	$\sigma_{(\gamma p \to t\bar{t})}$ [pb]	$\sigma_{(\gamma \mathbb{P} o t ar{t})} \; [ext{pb}]$	$\sigma_{(\mathbb{PP} o tar{t})} \; [ext{pb}]$	$\sigma_{(\gamma\gamma o tar{t})} \; [ext{pb}]$
SuperChic (isurv $= 1$)	_	_	_	$1.22(1)\cdot 10^{-5}$	$2.05(2) \cdot 10^{-4}$
(isurv = 2)	_	_	_	$3.21(2)\cdot 10^{-5}$	$2.06(1) \cdot 10^{-4}$
(isurv = 3)	_	_	_	$2.05(1)\cdot 10^{-5}$	$2.05(1) \cdot 10^{-4}$
(isurv = 4)	_	_	_	$1.59(1) \cdot 10^{-5}$	$2.06(1) \cdot 10^{-4}$
(sfaci = false)	_	_	_	$1.73(1) \cdot 10^{-3}$	$2.77(2) \cdot 10^{-4}$
$\operatorname{MadGraph}$		1 23	_	_	$3.33 \cdot 10^{-4}$
PYTHIA (MPI: unchecked)	90.5(1)	1.45	$1.26(6) \cdot 10^{-1}$	_	$4.56(2)\cdot 10^{-4}$
(MPI: checked)	5.14(5)	1.40	$1.27(6) \cdot 10^{-1}$	_	$4.57(2) \cdot 10^{-4}$
FPMC[7]	_	_	$5.2 \cdot 10^{-2}$	$2.84 \cdot 10^{-2}$	$3.4 \cdot 10^{-4}$

- Fully-elastic cross-sections are ~0.1 (1) fb for EW (QCD) (not including survival factor).
- Semi-elastic cross-sections are significantly larger, on the order of pb.

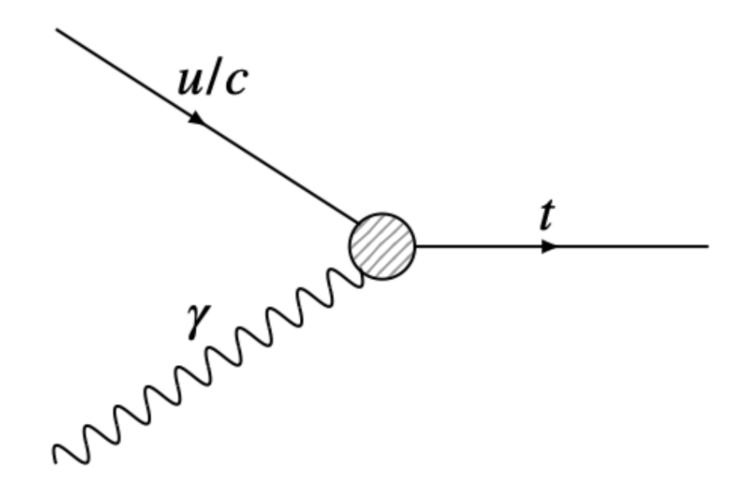


 Can be used to measure the proton survival probability (both the EW and QCD components).



• The EW and QCD parts of the survival probability are quite different vs. m(tt) (useful analysis handle).

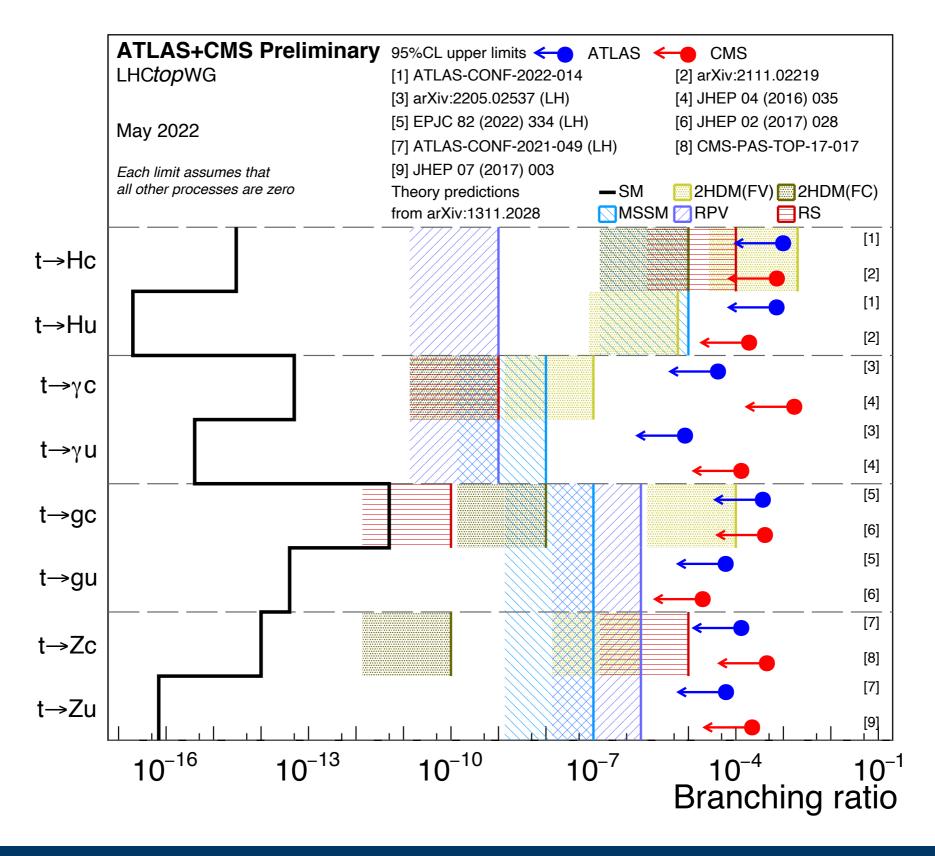
- Expect to loose a fair amount of single due to the AFP acceptance.
- Even small improvements can improve QCD case.



Process	$100 \; {\rm pb}^{-1}$	$300~\mathrm{pb^{-1}}$	1 fb^{-1}
, ,	$9 \cdot 10^{-4}$		
$\mathbb{PP} \to t\bar{t}$	$6 \cdot 10^{-5}$	$1.7 \cdot 10^{-4}$	$6 \cdot 10^{-4}$
$\gamma \mathbb{P} o t ar{t}$	$1.6 \cdot 10^{-1}$	$4.9 \cdot 10^{-1}$	1.6
$\gamma p o t ar t$	9.4 ± 0.3	30 ± 1	94 ± 3
$p\mathbb{P} \to t\bar{t}$	15 ± 2	40 ± 7	150 ± 20
Total	24 ± 2	70 ± 7	240 ± 20

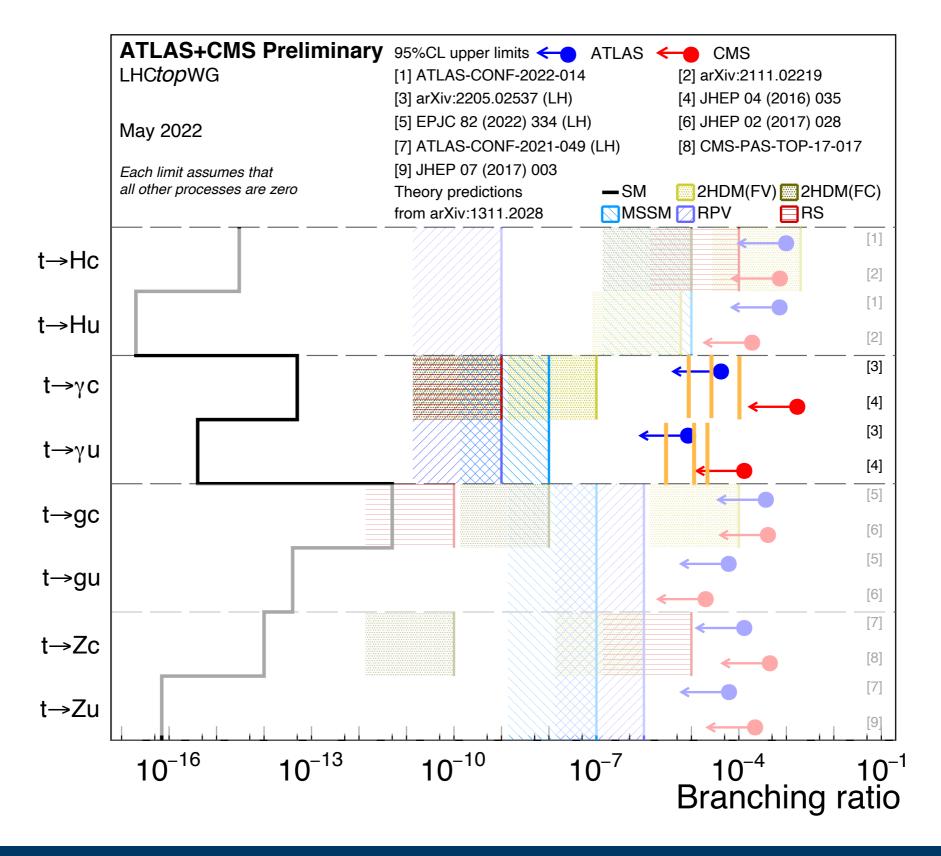
- Expected number of events using an AFP-tagged dilepton + I+jets tt̄ selection assuming low μ.
- ATLAS has ~150 pb of usable low-µ data for this type of analysis.

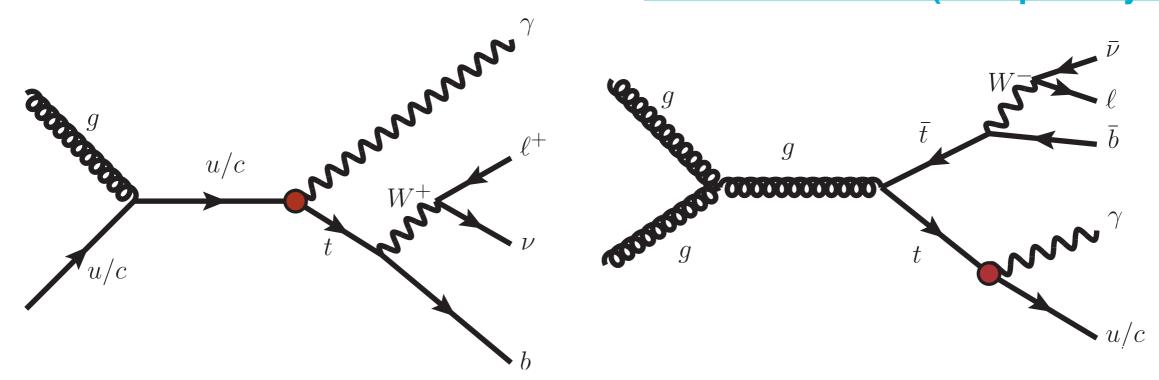
- Photon-initiated processes are sensitive to FCNCs.
- Cool think is that this doesn't require CEP to be sensitive.

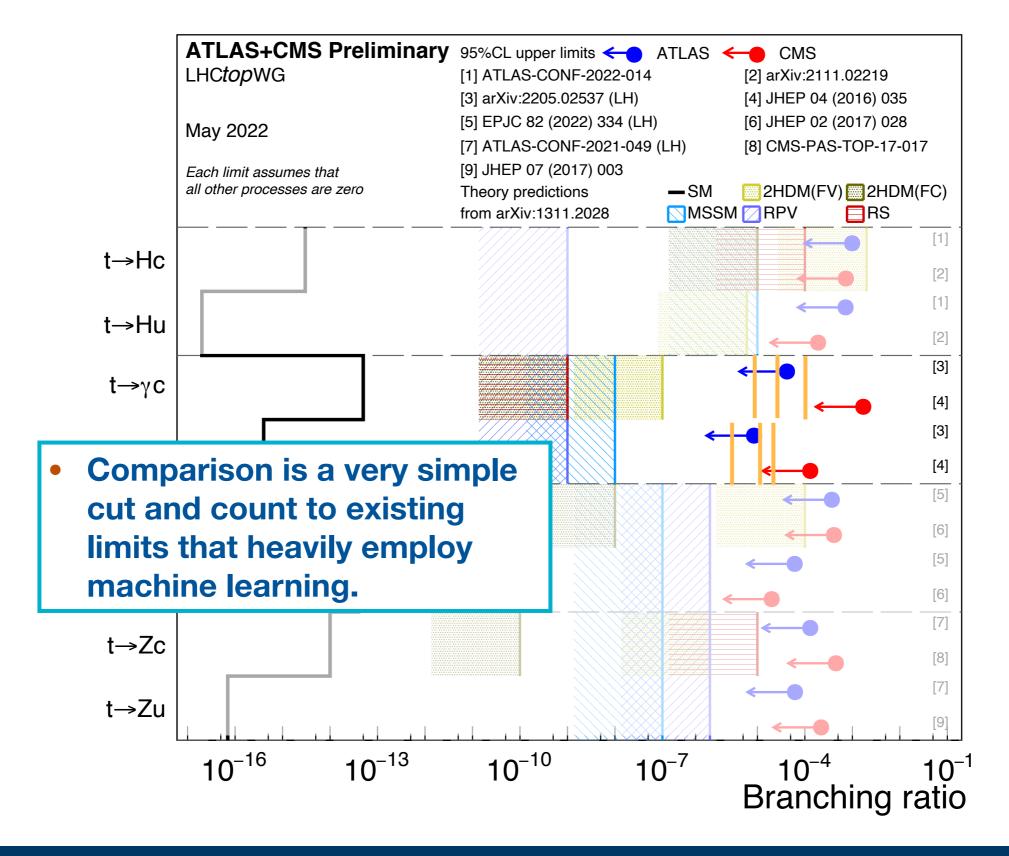

arxiv:2008.04249

Operator	$0.1 \; {\rm fb^{-1}}$	$0.3 \; {\rm fb}^{-1}$	$1.0 \; {\rm fb^{-1}}$	ATLAS [28]
	< 0.23	< 0.13	< 0.07	< 0.19
$ C_{uW}^{(23)*} + C_{uB}^{(23)*} $	< 0.35	< 0.20	< 0.11	< 0.52
$BR(t \to u\gamma)[10^{-5}]$ $BR(t \to c\gamma)[10^{-5}]$	< 4.05	< 1.35	< 0.39	< 2.8
$BR(t \to c\gamma)[10^{-5}]$	< 9.80	< 3.20	< 0.97	< 22

 Using expected Run2 data expected limits are very good (considering how "simple" the analysis is).

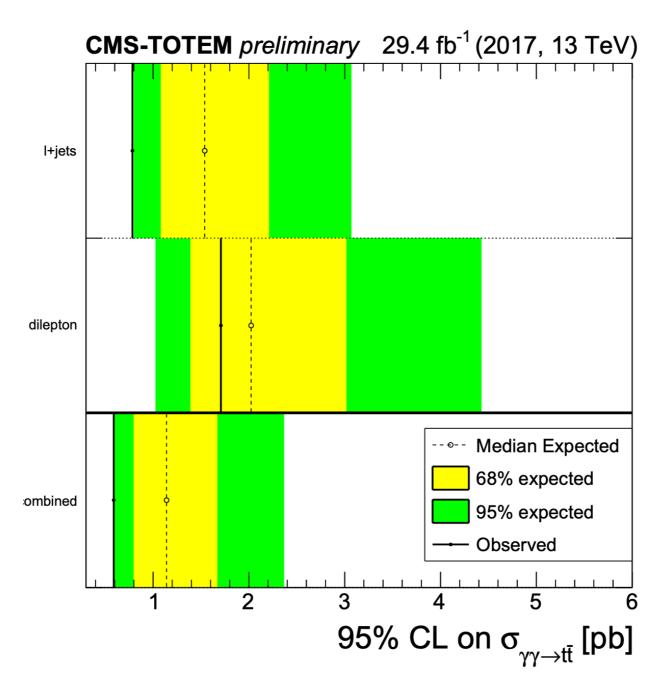





arxiv:2205.02537 (accepted by PLB)

- Current limits come from decay rather than production:
 - complementary limits even using the same dataset.
- Analysis uses an "optimised" set of 37 inputs to a NN.

CMS Result



- CMS have searched for Central Exclusive Production of tt pairs: <u>PAS-TOP-21-007</u> using 29 fb⁻¹ of Run2 data.
- For pileup simulation they mix single-arm proton tags from data with their signal (data-driven pileup).
- Signal generated with FCMC.

are available, including both QED and QCD contributions [15–20]. A critical element, in particular in the case of strong interaction processes, is the evaluation of the so-called rapidity gap survival probability, quantifying the probability of no additional soft interactions between the

Everything put into a BDT to isolate signal.

 Set an limit of 0.59 pb on the production crosssection.

Planned work

- ATLAS plans to try to measure the semi-elastic process to set limits on FCNCs using single-arm AFP tagged events.
- Also plans to set limits on fully elastic (see papers by Marek: 2007.04565, 2202.01257).
- Current status is severe lack of person power, result likely won't be out until tail-end of 2023 at the earliest.

Conclusions

- There are a few nice areas where elastic top physics can play a role.
- These analyses use AFP tagged events (likely not possible to do without it).
- Likely possible to observe semi-elastic case with existing and expected data in Run2 and Run3.
- Fully elastic cases will need HL-LHC.

Backup