Theory inputs to analysis

Photon-induced Workshop IPPP Durham • 03.11.2022

Three main interfaces of theory in measurements

- Description of exclusive signal
 - Reduction of cross section due to rescattering
- Description of semi-dissociative ~signal
 - Fragmentation of proton remnant and intact proton on the other side
- Description of charged particle distribution
 - Hadronic activity that is experimentally accessible to reject background
 - Pile-up that deteriorates the signal efficiency
- → Discussion in reverse order

Underlying event

- Charged particle distributions usually not well modelled
- But can assume that it is similar for quark-induced production of different colourless final states of comparable momentum
- If control region is good enough to determine background (yy → II, AFP tag), no need for detailled modelling
 - → otherwise: Needed

Underlying event corrections

- For $yy \rightarrow WW$ (without AFP tag):
 - Use Z boson and unfold charged particle distribution as function of:
 - particle multiplicity
 - $-p_T(II)$ (measure for $p_T([di]boson)$)
- Low ntrk (~low pT(II)) is of general interest:
 - Extract normalization of photon-induced backgrounds in tails (good signal description needed)
 - 2D Unfolding

Underlying event corrections

- For qq → WW: Good agreement for 1≤n_{trk}≤4
 but n_{trk}=0 has large differences between hadronic models
- Use midpoint and envelope for WW prediction (7% syst.)

- Correction can be up to a factor of 5!
 → good agreement with data afterwards
- Apply unfolded charged particle distribution as function of p_T(V) to DY
 (as function of p_T(VV) to diboson events)

Semi-dissociative modelling

- Standalone codes (LPAIR, Pythia, Superchic) \rightarrow often with limited processes implemented
- MG5 flexible models+processes → but needs interfacing to hadronization
 - \rightarrow solved for Pythia (after a number of bug fixes)
 - FSR/ISR and subsequent hadronization of non-dissociative proton
 - Setting of shower parameters (different from defaults) (see e.g. yyWW Superchic publication)
 - More unclear for other generators

Survival factor

Survival factor (measured)

- Data-driven scaling of $\gamma\gamma \rightarrow WW$ using $\gamma\gamma \rightarrow \ell\ell$ same flavour events for a signal-like selection ($n_{trk}=0, m_{\ell\ell} > 160 \text{ MeV}$)
- Shape of pp-induced backgrounds extracted for n_{trk}= 5 (less than 1% γγ)
- Normalization from Z-peak region (m_z+/- 7.5 GeV) (~0.5% of γγ)
- Both varied for systematics ~4%
- Scaling of yy → WW/ℓℓ by
 3.59 ± 0.15 yields good data/MC agreement

NOT accounted: transfer factor between yyWW and yyll (Lucian Harland-Lang)

