

The University of Manchester

Sterile neutrinos

Justin Evans

Sterile neutrinos

Singlet states with no weak interactions

Dark sector fermion-portal models very naturally produce sterile neutrinos

Neutrino mass needs right-handed states

 \triangleright Whether that's through Dirac or Majorana terms

Sterile neutrinos are theoretically very favourable

- \triangleright 'Just a neutral fermion'
- \triangleright But tend to be heavy MeV scale or above

The experimental hints are for light sterile neutrinos

 \triangleright Around the eV scale

$$
\mathcal{L} \supset y\, (i\sigma^2 H^*) LN
$$

$$
\mathcal{L}_{\rm mass} \supset - M_D^{\alpha\beta} \, \nu^\alpha N^\beta + h.c.
$$

MANCHESTER The University of Manchester

 $87.9 \pm 22.4 \pm 6.0$ excess *νe*-like events observed

3.8σ significance

The oscillation interpretation

The neutrinos have not traveled far enough for standard oscillations to occur

Requires a mass splitting $O(1 \text{ eV}^2)$

 \triangleright Fourth neutrino state

$$
P(\overline{\nu}_e \rightarrow \overline{\nu}_\mu) = \sin^2(2\theta) \sin^2\left(1.27\Delta m^2 \frac{L}{E}\right)
$$

Phys. Rev. D64, 112007 (2001)

The oscillation interpretation

Phys. Rev. D64, 112007 (2001)

MiniBooNE

MiniBooNE

Excesses of electron-like events observed

 \triangleright In both neutrino and antineutrino runs

Phys. Rev. Lett. 121, 221801 (2018)

MiniBooNE

Excess is distributed throughout the detector

 \triangleright Not consistent with escaping photons from $π⁰$ decay

 $π⁰$ rate is measured in data

Excess enhanced in forward lepton angles

 \triangleright Less consistent with oscillations

MiniBooNE & LSND

When combined together, along with exclusion regions, a mass splitting a little below 1 eV² can fit the data reasonably well

Øe.g. Giunti & Lasserre, Ann. Rev. Nucl. Part. Sci. **69**, 163 (2019)

Liquid argon: MicroBooNE

We can see the hadronic final state

Liquid argon: MicroBooNE

Liquid argon: MicroBooNE

MicroBooNE's Farst Senes gy LEX CSearch Analyses

Four independent analyses

- \triangleright Targeting six different final states
- Single-photon analysis $\frac{1}{2}$
	- \triangleright NC $\Delta \rightarrow$ Ny hypothesis \sim NC Δ —> Nγ hypothesis
		- \triangleright 1γ0p, 1γ1p

MANCHI

Searches for a v_{e} excess

- \triangleright Quasi-elastic kinematics (1e1p)
- \triangleright MiniBooNE-like final states (1eNp, 1e0p) \sim Quasi enable kinematics (2ϵ P) $\binom{1}{0}$ MiniBoonE-like final states (1e)
	- \triangleright All v_e final states (1eX) \mathbb{R} (1. Finel states (1eV) \sim All \sim μ final states (1eX)

Single photons: Δ→Nγ

Several photon sources in MiniBooNE

NC $π⁰$ misidentification

 \triangleright Measured in MiniBooNE with sidebands

Interactions outside the detector

 \triangleright Eliminated using beam timing and radial cuts

$NC \Delta \rightarrow Ny$

- Ø **NC delta radiative decay**
- \triangleright Not constrained directly by MiniBooNE
- \triangleright Used π^0 measurements and a theoretical branching ratio for the delta radiative decay

$\Delta \rightarrow$ Ny: 1y1p topology

$\Delta \rightarrow$ Ny: 1y0p topology

Single photon analysis

MANCH

The University of Manchester

1p2γ and 0p2γ samples

High statistics: 1130 candidate π ⁰ interactions Used to constrain the π^0 backgrounds in the $\Delta \rightarrow N\gamma$ signal samples

 \triangleright And validate shower reconstruction and energy measurement

Single-photon results

No evidence for an enhanced rate of single photons from NC $\Delta \rightarrow N\gamma$ decay above nominal GENIE expectations

 \triangleright x3.18 scaling disfavoured at 94.8% C.L.

One-sided bound on the normalisation of NC Δ→Nγ events of **x< 2.3** (90% C.L.) $\mathcal{B}_{\rm eff}(\Delta \to N \gamma) \, < \, 1.38\%$ (90% C.L.)

More than 50 times better than the world's previous limit

Electron search

 $e₋$

Three independent searches across multiple final states

Fully inclusive charged-current v_e : 1eX

Start with muon neutrinos

High-statistics CC v_{μ} **samples**

- Leverage v_{μ} and v_{e} correlations
	- \triangleright Common flux parentage
	- \triangleright Lepton universality
- Use our v_{μ} sample to create a datadriven ν^e prediction
	- \triangleright Systematic uncertainties incorporated through a covariance matrix
	- \triangleright This process reduces the uncertainty on the v_{e} prediction

1eX prediction before constraint

1eX prediction after constraint

Electron results

Phys. Rev. D **105**, 112003 (2022); Phys. Rev. D **105**, 112004 (2022); Phys. Rev. D **105**, 112005 (2022)

Electron results

- \triangleright Observe v_e candidate event rates in agreement with, or below, the predicted rates
- \triangleright Reject the hypothesis that v_e CC interactions are fully responsible for the MiniBooNE excess at >97% C.L. in all analyses
- \triangleright Inclusive analysis rejects our median MiniBooNE electronexcess model at 3.75σ

MicroBooNE oscillation limits

With the first half of our data, we are excluding part of the LSND allowed region

- \triangleright Note that a degeneracy between v_e disappearance and appearance reduces our sensitivity
- \triangleright But we will use the NuMI beam – a second baseline – to overcome this in a future analysis

MicroBooNE and the global fits

Giunti, NOW 2022

$v_{\mu} \rightarrow v_{e}$ is not the only observable

$$
U = \left(\begin{array}{lll} U_{e1} \ U_{e2} \ U_{e3} \ U_{e4} \\ U_{\mu 1} \ U_{\mu 2} \ U_{\mu 3} \ U_{\mu 4} \\ U_{\tau 1} \ U_{\tau 2} \ U_{\tau 3} \ U_{\tau 4} \\ U_{s 1} \ U_{s 2} \ U_{s 3} \ U_{s 4}\end{array}\right)
$$

*θ*14: *νe* disappearance *θ*24: *νμ* disappearance *θ*34: *ντ* disappearance

$$
\sin^2(2\theta_{14})\sin^2\theta_{24}\colon v_\mu \to v_e
$$

The simplest sterile neutrino oscillation model has a single sterile flavour+mass state

 \triangleright Introduces three new mixing angles

Reactor neutrinos

In 2011 recalculations of reactor neutrino fluxes left historic experiments now seeing few-percent deficits at ~3σ significance

```
\triangleright Non-zero \theta_{14}?
```
Mueller et al., Phys. Rev. C **83**, 054615 (2011); Huber, Phys. Rev. C **84**, 024617 (2011)

Reactor neutrinos

 \triangleright But can we trust reactor flux predictions at the few-percent level?

Gallium detectors

Calibration runs with 51Cr and 37Ar sources at the SAGE and GALLEX solar-neutrino experiments

 \triangleright Recently confirmed by the BEST experiment

Deficits of v_{e} interactions seen with respect to the expectation

- \triangleright Requires dead-reckoning of cross-sections, but all crosssection models confirm the deficit
- \triangleright No clear oscillatory pattern seen as a function of distance

Giunti et al., JHEP **2022**, 164 (2022) Barinov et al., Phys. Rev. Lett. **128**, 232501 (2022)

Electron-neutrino disappearance

Tritium experiments (such as KATRIN) also place limits at high Δm2

$$
m_{\beta}^2 = \sum_{i=1}^3 |U_{ei}|^2 m_i^2.
$$

No flux or cross-section model choices can get the reactor and gallium anomalies to agree on a sterile-neutrino cause

 \triangleright And the gallium anomaly is in tension with bounds from solar neutrinos

N.B. the Neutrino-4 anomaly has received some criticism, and is largely ruled out by more recent measurements

Giunti et al., JHEP **2022**, 164 (2022)

Muon neutrino disappearance

If $v_{\mu} \rightarrow v_{e}$ happens, then muon neutrinos must disappear

Here, the red area shows the level of v_{μ} disappearance required to explain the $v_{\mu} \rightarrow v_{e}$ appearance in LSND, given the v_e -disappearance allowed regions

- \triangleright The v_{μ} disappearance results strongly exclude this red region
- \triangleright Adding more neutrinos (beyond $3+1$) does not help

Cosmological constraints

Planck data sets strong limits on the effective neutrino mass

 \triangleright This mass would increase if active flavour states mixed into heavier mass states

These strong limits also exclude the parameter space needed to explain the $v_\mu \rightarrow v_e$ and v_e – disappearance anomalies with sterile neutrinos

Eur. Phys. J. C **80**, 8 (2020)

Heavy neutral leptons

 K^{\cdot}

 $|U_{\mu 4}|$

 $|U_{\mu 4}|^2$

Many theoretically-favoured sterile neutrinos are MeVscale or higher in mass

 \triangleright We can look for these in short-baseline experiments as they would be produced in the beam and decay in the detector

35

Onwards to the SBN programme

MicroBooNE alone still has half its data to analyse

MANCHEST

The University of Manchester

- \triangleright And by including data from the NuMI can resolve degeneracies between ν_e appearance and disappearance
- \triangleright Expect new results, with significantly improved sensitivity, next year

The SBN programme will take a threedetector approach to the sterile-neutrino problem

 \triangleright With multiple baselines, the need to dead-reckon cross-sections and fluxes cancels out

Summary

Neutrino physics is hard!

- \triangleright Dead-reckoning fluxes and cross sections is fraught with challenges
- Extensive neutrino cross-section programmes (e.g. MicroBooNE, SBN) are essential
- Ø Multiple baselines (i.e. near detectors) are essential to cancel model uncertainties

There are numerous appearance and disappearance anomalies that can individually be explained by a light sterile neutrinos

 \triangleright But looked at together, no sterile neutrino can fit all the pieces of the puzzle

Heavy sterile neutrinos are theoretically favourable

 \triangleright An active experimental programme is ongoing here

We cannot yet explain away many of the anomalies

 \triangleright But future programmes, such as the SBN programme, will continue to shed light on the short-baseline behaviour of neutrinos

