

The University of Manchester

Sterile neutrinos

Justin Evans

Sterile neutrinos

Dark sector fermion-portal models very naturally produce sterile neutrinos

Neutrino mass needs right-handed states

> Whether that's through Dirac or Majorana terms

Sterile neutrinos are theoretically very favourable

- > 'Just a neutral fermion'
- > But tend to be heavy MeV scale or above

The experimental hints are for light sterile neutrinos

Around the eV scale

$$\mathcal{L} \supset y \, (i\sigma^2 H^*) LN$$

$$\mathcal{L}_{\mathrm{mass}} \supset -M_D^{lphaeta} \,
u^{lpha} N^{eta} + h.c.$$

MANCHESTER 1824 The University of Manchester

 $87.9 \pm 22.4 \pm 6.0$ excess $\overline{v_e}$ -like events observed

 3.8σ significance

The oscillation interpretation

 $P(\overline{\nu}_e \to \overline{\nu}_\mu)$

The neutrinos have not traveled far enough for standard oscillations to occur

Requires a mass splitting O(1 eV²)

Fourth neutrino state

$$= \sin^{2}(2\theta) \sin^{2}\left(1.27\Delta m^{2}\frac{L}{E}\right)$$

Phys. Rev. D64, 112007 (2001)

The oscillation interpretation

MiniBooNE

MiniBooNE

Excesses of electron-like events observed

>In both neutrino and antineutrino runs

Phys. Rev. Lett. 121, 221801 (2018)

MiniBooNE

Excess is distributed throughout the detector

> Not consistent with escaping photons from π^0 decay

 π^{0} rate is measured in data

Excess enhanced in forward lepton angles

Less consistent with oscillations

MiniBooNE & LSND

When combined together, along with exclusion regions, a mass splitting a little below 1 eV² can fit the data reasonably well

e.g. Giunti & Lasserre,
 Ann. Rev. Nucl. Part. Sci.
 69, 163 (2019)

Liquid argon: MicroBooNE

We can see the hadronic final state

Liquid argon: MicroBooNE

Liquid argon: MicroBooNE

The University of Manches MicroBobins's Forest Series gy Leteses chearaly ses

Four independent analyses

- > Targeting six different final states
- Single-photon analysis
 - ightarrow NC $\Delta \rightarrow$ N γ hypothesis
 - ≻ 1γ0p, 1γ1p

MANCH

Searches for a ν_e excess

- Quasi-elastic kinematics (1e1p)
- MiniBooNE-like final states (1eNp, 1e0p)
- > All v_e final states (1eX)

Single photons: $\Delta \rightarrow N\gamma$

Several photon sources in MiniBooNE

NC π^{0} misidentification

Measured in MiniBooNE with sidebands

Interactions outside the detector

> Eliminated using beam timing and radial cuts

$\mathsf{NC} \ \Delta \ \rightarrow \ \mathsf{N} \mathsf{Y}$

- NC delta radiative decay
- > Not constrained directly by MiniBooNE
- Used π⁰ measurements and a theoretical branching ratio for the delta radiative decay

$\Delta \rightarrow N\gamma$: 1 γ 1p topology

$\Delta \rightarrow N\gamma$: 1 γ 0p topology

Single photon analysis

MANC

The University of Manchester

$1p2\gamma$ and $0p2\gamma$ samples

High statistics: 1130 candidate π^0 interactions Used to constrain the π^0 backgrounds in the $\Delta \rightarrow N\gamma$ signal samples

And validate shower reconstruction and energy measurement

Single-photon results

No evidence for an enhanced rate of single photons from NC $\Delta \rightarrow N\gamma$ decay above nominal GENIE expectations

> x3.18 scaling disfavoured at 94.8% C.L.

One-sided bound on the normalisation of NC $\Delta \rightarrow$ N γ events of $x_{\Delta} < 2.3$ (90% C.L.) $\mathcal{B}_{\rm eff}(\Delta \rightarrow N\gamma) < 1.38\%$ (90% C.L.)

More than 50 times better than the world's previous limit

Electron search

Three independent searches across multiple final states

CC ve interactions without final-state pions: $1eNp0\pi$ & $1e0p0\pi$

> Matches the topology of MiniBooNE events

Fully inclusive charged-current v_e : 1eX

Start with muon neutrinos

High-statistics CC v_{μ} samples

Leverage ν_{μ} and ν_{e} correlations

- Common flux parentage
- Lepton universality

Use our ν_{μ} sample to create a data-driven ν_{e} prediction

- Systematic uncertainties incorporated through a covariance matrix
- This process reduces the uncertainty on the v_e prediction

1eX prediction before constraint

1eX prediction after constraint

Electron results

Phys. Rev. D 105, 112003 (2022); Phys. Rev. D 105, 112004 (2022); Phys. Rev. D 105, 112005 (2022)

Electron results

- Observe v_e candidate event rates in agreement with, or below, the predicted rates
- Reject the hypothesis that v_e CC interactions are fully responsible for the MiniBooNE excess at >97% C.L. in all analyses
- Inclusive analysis rejects our median MiniBooNE electronexcess model at 3.75σ

MicroBooNE oscillation limits

With the first half of our data, we are excluding part of the LSND allowed region

- Note that a degeneracy between v_e disappearance and appearance reduces our sensitivity
- But we will use the NuMI beam - a second baseline - to overcome this in a future analysis

MicroBooNE and the global fits

Giunti, NOW 2022

$v_{\mu} \rightarrow v_{e}$ is not the only observable

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

 θ_{14} : v_e disappearance θ_{24} : v_{μ} disappearance θ_{34} : v_{τ} disappearance

$$\sin^2(2\theta_{14})\sin^2\theta_{24}: v_\mu \to v_e$$

The simplest sterile neutrino oscillation model has a single sterile flavour+mass state

Introduces three new mixing angles

Reactor neutrinos

In 2011 recalculations of reactor neutrino fluxes left historic experiments now seeing few-percent deficits at $\sim 3\sigma$ significance

```
> Non-zero \theta_{14}?
```

Mueller et al., Phys. Rev. C 83, 054615 (2011); Huber, Phys. Rev. C 84, 024617 (2011)

Reactor neutrinos

> But can we trust reactor flux predictions at the few-percent level?

Gallium detectors

Calibration runs with ⁵¹Cr and ³⁷Ar sources at the SAGE and GALLEX solar-neutrino experiments

 Recently confirmed by the BEST experiment

Deficits of ν_{e} interactions seen with respect to the expectation

- Requires dead-reckoning of cross-sections, but all crosssection models confirm the deficit
- No clear oscillatory pattern seen as a function of distance

Electron-neutrino disappearance

Tritium experiments (such as KATRIN) also place limits at high Δm^2

$$m_{eta}^2 = \sum_{i=1}^3 |U_{ei}|^2 m_i^2.$$

No flux or cross-section model choices can get the reactor and gallium anomalies to agree on a sterile-neutrino cause

And the gallium anomaly is in tension with bounds from solar neutrinos

N.B. the Neutrino-4 anomaly has received some criticism, and is largely ruled out by more recent measurements

Giunti et al., JHEP 2022, 164 (2022)

Muon neutrino disappearance

If $\nu_{\mu} \! \rightarrow \! \nu_{e}$ happens, then muon neutrinos must disappear

Here, the red area shows the level of v_{μ} disappearance required to explain the $v_{\mu} \rightarrow v_{e}$ appearance in LSND, given the v_{e} -disappearance allowed regions

- The v_µ disappearance results strongly exclude this red region
- Adding more neutrinos (beyond 3+1) does not help

Cosmological constraints

Planck data sets strong limits on the effective neutrino mass

This mass would increase if active flavour states mixed into heavier mass states

These strong limits also exclude the parameter space needed to explain the $v_{\mu} \rightarrow v_{e}$ and v_{e} disappearance anomalies with sterile neutrinos

Eur. Phys. J. C 80, 8 (2020)

Heavy neutral leptons

 K^{\cdot}

 $|U_{\mu 4}|$

 $|U_{\mu 4}|^2$

Many theoretically-favoured sterile neutrinos are MeVscale or higher in mass

We can look for these in short-baseline experiments as they would be produced in the beam and decay in the detector

35

Onwards to the SBN programme

MicroBooNE alone still has half its data to analyse

MANCH

The University of Manchester

- And by including data from the NuMI can resolve degeneracies between v_e appearance and disappearance
- Expect new results, with significantly improved sensitivity, next year

The SBN programme will take a threedetector approach to the sterile-neutrino problem

 With multiple baselines, the need to dead-reckon cross-sections and fluxes cancels out

v_e appearance SBN sensitivity

Summary

Neutrino physics is hard!

- > Dead-reckoning fluxes and cross sections is fraught with challenges
- Extensive neutrino cross-section programmes (e.g. MicroBooNE, SBN) are essential
- Multiple baselines (i.e. near detectors) are essential to cancel model uncertainties

There are numerous appearance and disappearance anomalies that can individually be explained by a light sterile neutrinos

But looked at together, no sterile neutrino can fit all the pieces of the puzzle

Heavy sterile neutrinos are theoretically favourable

> An active experimental programme is ongoing here

We cannot yet explain away many of the anomalies

But future programmes, such as the SBN programme, will continue to shed light on the short-baseline behaviour of neutrinos

