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Where from? Where to?

 Where from?
 Nuclear fission
 Nuclear fusion (in the sun)
 Atmospheric protons
 Accelerator-driven protons

 Where to?
 The detector!
 What are possible future neutrino sources?
 What might future neutrino facilities look like?
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Where to?

 Main existing or near-term facilities planned
 JPARC (T2HK)
 Fermilab (DUNE)

 Horizon scanning:
 ESSnuSB – the ultimate superbeam
 Cyclotron sourced neutrinos – Daedalus and Isodar
 Neutrinos from exotic particles

 ENUBET
 NuSTORM

 Neutrino factories – ultimate precision
 Muon collider as a neutrino source

 Different high power proton sources
 Linear accelerator (linac) → long straight accelerator
 Synchrotron ring → ramp magnet with the acceleration
 Cyclotron ring → beam radius changes with acceleration
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Superbeam

 Superbeam
 Protons strike target
 Pions focused through horn focusing
 Decay in long beam pipe to make neutrinos

 Neutrino rate determined by beam power
 More protons → more pions
 More proton energy → more pions
 As a 0th approximation, neutrino rate proportional to proton 

beam power
 Two facilities deliver superbeams

 JPARC
 Fermilab
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J-PARC Complex

 Linac
 H-
 Accelerate to 400 MeV

 Rapid Cycling 
Synchrotron (RCS)

 Charge exchange 
injection

 Accelerate to 3 GeV
 15 Hz Rep Rate

 Main Ring (Synchrotron)
 Accelerate to 30 GeV
 0.4 Hz Rep Rate
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J-PARC Upgrades

 Proton facility
 Increase rep rate 0.4 Hz → 0.86 

Hz
 Increase current 2.65 x 1014 → 

3.2 x 1014

 Improved beam diagnostics
 New horn → increased focusing
 New target with improved 

cooling
 Probably limits beam power
 UK is big player
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Fermilab Complex

 Linac 
 H- accelerated to 400 MeV

 Booster
 Charge exchange injection
 Acceleration to 8 GeV
 15 Hz rep rate

 Main Injector → 120 GeV
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Fermilab Complex PIP-II

PIP-II SRF
Linac
0.8 GeV

New SRF linac raises Booster injection energy, new LBNF beamline.

1.2 MW LBNF
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to DUNE
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Fermilab Complex PIP-III

Main Injector
(MI)

PIP-II
Linac

RCS

~2 GeV Linac 
Upgrade

Recycler

Optional
Accumulator
Ring

8 GeV Linac

PIP-II
Linac

8 GeV
Accumulator
RingOptional

Accumulator
Ring

 At higher beam power 
the booster becomes 
the bottleneck

 Protons at different 
momenta have same 
Time-of-Flight

 No longitudinal 
focusing → unstable

 Space charge losses
 Replace the booster

 Linac to 8 GeV
 Foil heating!

 RCS
 Magnet ramp time

 Cost and risk…
 New target
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A superbeam in Europe? ESSnuSB

 ESS will be the highest power proton source in the world
 2 MW at start of operation (2027)
 Upgrade to 5 MW
 Proton linac → ~3 ms pulse

 Need H- ions to accumulate into ~ 1 μs pulse
 Upgrade linac, interleaving H- and H+

 “Ultimate” beam power
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ESSnuSB

 ABC

Target is the limit on beam power
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IsoDAR

 Cyclotrons
 e.g. PSI cyclotron (1.3 MW)
 frf=qB/2πm
 Independent of momentum
 Non-relativistic only

 Current limits
 Halo formation
 Space charge

 IsoDAR
 Accelerate H2

+ → reduce space charge
 Advanced injector → prebunching
 Careful acceleration to 60 MeV/amu

 Neutrino production from β decay
 Impact to 7Li Target
 Excite 8Li → decay into Kamland detector

 Sterile neutrino searches possible
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Daedalus

 Accelerate further to 800 MeV
 Superconducting magnets
 Extract by stripping foil

 H2
+ → H+ + H+

 Pion production on target
 Threshold for pion production 

~400 MeV 
 “Conventional” pion 

production possible
 Decay at rest

 Beam power comparable to 
JPARC

 Pion yield comparable
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The systematics limit

 Increasing beam power helps with statistics
 Eventually systematic limitations dominate

 Uncertainty in the beam
 Uncertainty in the neutrino energy → neutrino interaction in the 

detector
 Use near detector to estimate neutrino interactions e.g. PRISM

 Where is the limit? Is there another way?



  15

nuSTORM facility

 What is the nuSTORM facility?

 Main features
 ~250 kW target station
 Pion transport line
 Stochastic muon capture into storage ring
 Option for conventional FODO ring or high aperture FFA ring

nuSTORM at CERN – Feasibility Study, Ahdida et al, CERN-PBC-REPORT-2019-003, 2020
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Target and Pion Transport Line

OCS = Orbit Combination Section

A. Liu et al, Design and Simulation of the nuSTORM Pion Beamline, NIM A, 2015
D. Adey et al, Overview of the Neutrinos from Stored Muons Facility – nuSTORM, JINST, 2017

 Conventional 250 kW target horn
 Pion transport line

 Proton beam dump
 Momentum selection
 Active handling
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Stochastic Muon Capture

 Pions injected into the decay ring
 Capture muons that decay backwards in pion CoM frame
 Undecayed pions and forwards muons diverted into muon test area

 Extraction line at end of first decay straight

Pions at horn Muons in 
decay straight

OCS 
π acceptance

Storage ring
μ acceptance
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Storage Ring

 Storage ring technologies:
 Conventional FoDo ring
 High acceptance FFA ring

nuSTORM at CERN – Feasibility Study, Ahdida et al, CERN-PBC-REPORT-2019-003, 2020
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Storage Ring

 Neutrinos momentum range up to 4 GeV
 Tunable ring energy under investigation

 Optimisation so far has focused on 3.8 GeV μ
 Higher energy would give more reach to cross section measurements

 Optimisation of storage ring to give improved neutrino flux
 Hybrid FoDo straights with high acceptance FFA bends

[a
u]

ν energy
μ phase space

Lagrange et al, Racetrack FFAG muon decay ring for nuSTORM with triplet focusing, J. Inst 13 (2018)
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Neutrino energy spectrum

 PRISM – move the detector off-axis → vary ν energy
 NuSTORM – tweak the storage ring energy → vary the ν energy

 We know – to high precision – the neutrino beam parameters
 Much more freedom to shape the neutrino beam
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ENUBET

 Slowly extract protons to a target
 Produce pions and kaons
 Monitor decays of kaons in the decay tunnel
 Either pulsed extraction or CW extraction

 1 kaon every 70 ps or every 1 ns
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ENUBET

 Identify positrons from kaon 
decay

 Understand νe rate and beam 
kinematics

 Estimate pion rate → νμ

 Map individual kaons to 
neutrinos using time 
coincidence

 Understand individual neutrino 
kinematics

 Requires slow extraction

Kaon 

Electron
neutrino 

Pion 

Positron
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nuPIL

 Take ENUBET concept to 
production beam

 Add momentum selection 
chicane after the target

 Remove kaons
 Reduce required shielding

 Protons are taken to dedicated 
beam dump

 Pion charge/momentum 
selection
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Neutrino Factory

 How to improve precision further?
 Take the nuSTORM concept further

 Enhanced muon capture
 Use solenoid

 Accelerate muons in a linac
 Storage ring
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Neutrino Factory - target

 Proof-of-principle solenoids under study
 Fusion machines operate in similar parameter space

 Targetry is the power limit for neutrino beams anyway
 Need to do something

 10-20 year R&D programme

Neutrino factory, Bogomilov et al, PRSTAB 17 (2014)

Cryogenic

Room temp
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Muon Collider Facility

 Proton based Muon Collider (MC) facility
 Protons on target → pions, muons et al.
 Transverse and longitudinal capture and cooling
 Acceleration
 Collider ring

 Challenges
 High current radioactive beam passing active components
 Containment of tertiary beam (i.e. muons)
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Technologies

 High power dual-sign (μ+μ-) target
 Capture and ionisation cooling
 Acceleration and storage

 Either conventional FODO-based 
Rapid Cycling Synchrotron

 Or novel FFA

X. Ding et al, Carbon and Mercury target system 
for muon colliders and neutrino factories,  IPAC16
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nuSTORM as a muon test bed

MC Front End Baseline Muon Collider Rings

nuSTORM 
target and ring

nuSTORM
pion dump

 NuSTORM would make an 
excellent test facility

 One of the highest current high 
energy muon beams

 Target/irradiation test area
 Muon beam physics tests
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Neutrinos from Muon Collider

 Muon collider is a neutrino factory
 O(1e13) muons per second
 Decay straight O(1e-3) of the ring
 Neutrino beam is narrow

O(1m) 
at 100 km

[~1/γ]
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Final thoughts

 Neutrino source is crucial part of the experiment
 Exciting current/next generation of superbeam experiments

 Approaching the systematic limit
 Target is probably the bottleneck

 To beat down the systematics, probably need novel source
 Interesting ideas for source characterisation
 Enables proper characterisation of the scattering

 To develop a new source technology
 Lead times are longer than you think
 Don’t end up without an upgrade path



  31

Backups
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Phase stability

 Particle crossing at phase ϕ 
relative to synchronous 
particle

 Particle arriving early
 Fast
 t negative
 Gets smaller energy kick
 Ends up relatively slower

 Particle arriving late
 Slow 
 t positive
 Gets bigger energy kick
 Ends up relatively faster

 Phase stability!

δW=q T g E0 sin (ϕ+ϕs)

Slow, late particle

Fast, early
 particle

Synchronous
 particle

W
-W

s

ϕϕs
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Charge Exchange Injection

 High current → accumulate beam over many turns
 Charge exchange injection of H- ions through a thin foil
 Foil removes electrons
 Issues: Scattering and energy loss of protons in foil

 Painting of beam into synchtron acceptance using fast 
“bumper” magnets

 Move recirculating beam around in horizontal and vertical 
phase space

 Fill a much larger acceptance

p

H-
Thin foil

Pulsed dipoles
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