Sterile Neutrinos in Tritium Beta-Decay Experiments arXiv: 2211.XXXXX

Wenna Pei

Institute of Physics, ELTE Eötvös Loránd University, Hungary

Wenna Pei

HEP Theory, University College London, UK

UK HEP Forum, November 22

Cosener's 2022

Active Neutrinos

Wenna Pei

Cosener's 2022

2/6

CRES

- Low measurement uncertainty required
- Novel idea of Cyclotron Radiation Emission Spectroscopy (CRES)
- CRES and use of atomic tritium promising combination

Wenna Pei

-10 **Project 8 and CRES Demonstration** %06 **Apparatus (CRESDA)** \mathbf{P} mass limit, $\overline{2\pi} E_{\epsilon}$ e< -0.1 arXiv: 1309.7093v1

Cosener's 2022

Sterile States

- In one active + one sterile model
- Sterile neutrino with mass $0 < m_N \le 18.6$ keV produces kink
- CRES experiments with aim of measuring active mass could also be used for sterile searches

$$|V_{eN}|^2 \longrightarrow \text{active}_{sterile mixing angle}$$

$$\frac{d\Gamma_{tot}}{dE_K} = (1 - |V_{eN}|^2) \frac{d\Gamma_{SM}}{dE_K} + |V_{eN}|^2 \frac{d\Gamma_{steri}}{dE_K}$$

Theoretical Corrections

• Theoretical corrections to

spectrum (combined into overall multiplicative factor)

- Fermi function (F)
- Radiative corrections (G)
- Finite size nucleus effects (L and B)
- Recoiling nuclear charge (Q)
- Nuclear screening (S)

Cosener's 2022

Projected Limits

Wenna Pei

- In this mass range, currently best bound is of order $10^{-2} 10^{-3}$
- Performed χ^2 and used Asimov data set
- Our analysis shows sensitivities of order 10^{-8} are achievable, for a total statistics of 10^{18} events (black line = statistical limit)

Sufficient to distinguish between NO and IO hierarchies

$$t \stackrel{min,A}{=} \left[\sum_{i=1}^{N_{bins}} \frac{(N_{BSM}^{(i)} - (1+A)N_{SM}^{(i)})^2}{(1+A)N_{SM}^{(i)}} + \left(\frac{A}{\sigma_A}\right) \right]$$

