A Genetic Quantum Annealing Algorithm

Luca Armando Nutricati

Institute for Particle Physics Phenomenology, Durham University

28/10/2022

Motivation

- Genetic algorithms (GA) are a valid tools to tackle search and
- However, for some problems, the search space can be very large (e.g. string theory landscapes ~ 10500)
- Classical genetic algorithms may **not be efficient**

optimisation problems (from sudoku puzzles to string theory landscapes...)

Motivation

- Genetic algorithms (GA) are a valid tools to tackle search and
- However, for some problems, the search space can be very large (e.g. string theory landscapes ~ 10^{500})
- Classical genetic algorithms may **not be efficient**

optimisation problems (from sudoku puzzles to string theory landscapes...)

Can we construct an enhanced version of genetic algorithms using quantum computing?

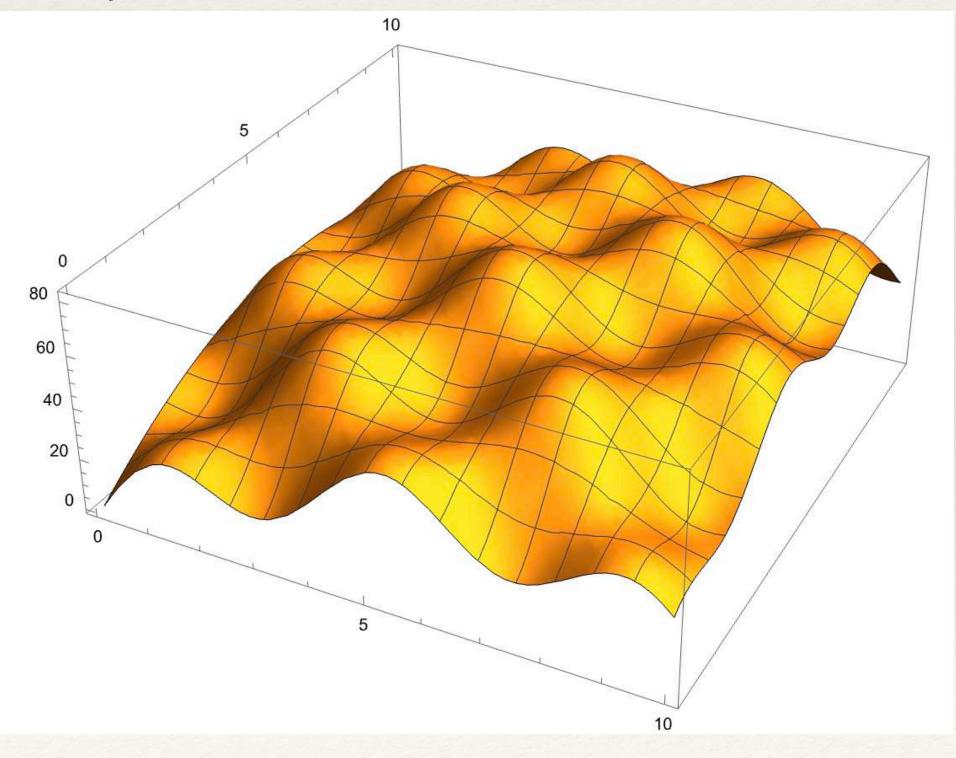
- Background on Genetic Algorithms (GA)
- Introduction to Quantum Annealing
- The combined technique: Genetic Quantum Annealing (GQA)
- GA vs GQA

Outline

A genetic algorithm (GA) is a heuristic search algorithm inspired by the process of natural selection.

Genetic algorithms are used to generate high-quality solutions to **optimisation and search problems** by relying on biologically inspired operators such as **mutation**, **crossover** and **selection**.

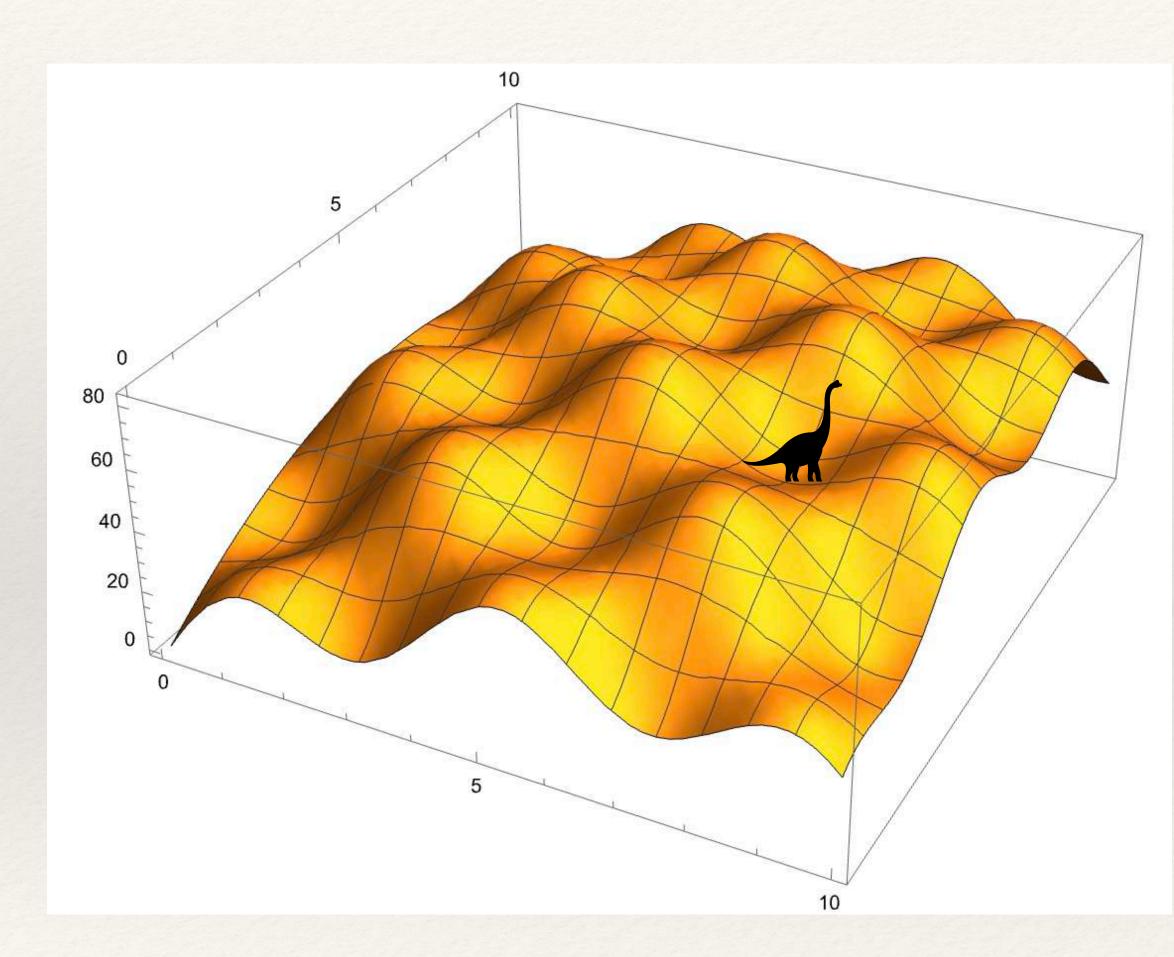
Example: find global maximum to 250 decimal places without using calculus



$$f(x,y) = 12\left(\cos\frac{3y}{2}\,\sin\frac{3x}{2} + x + y\right) - x^2 - y^2$$

Search space: 10⁵⁰⁰

Example: find global maximum to 250 decimal places without using calculus



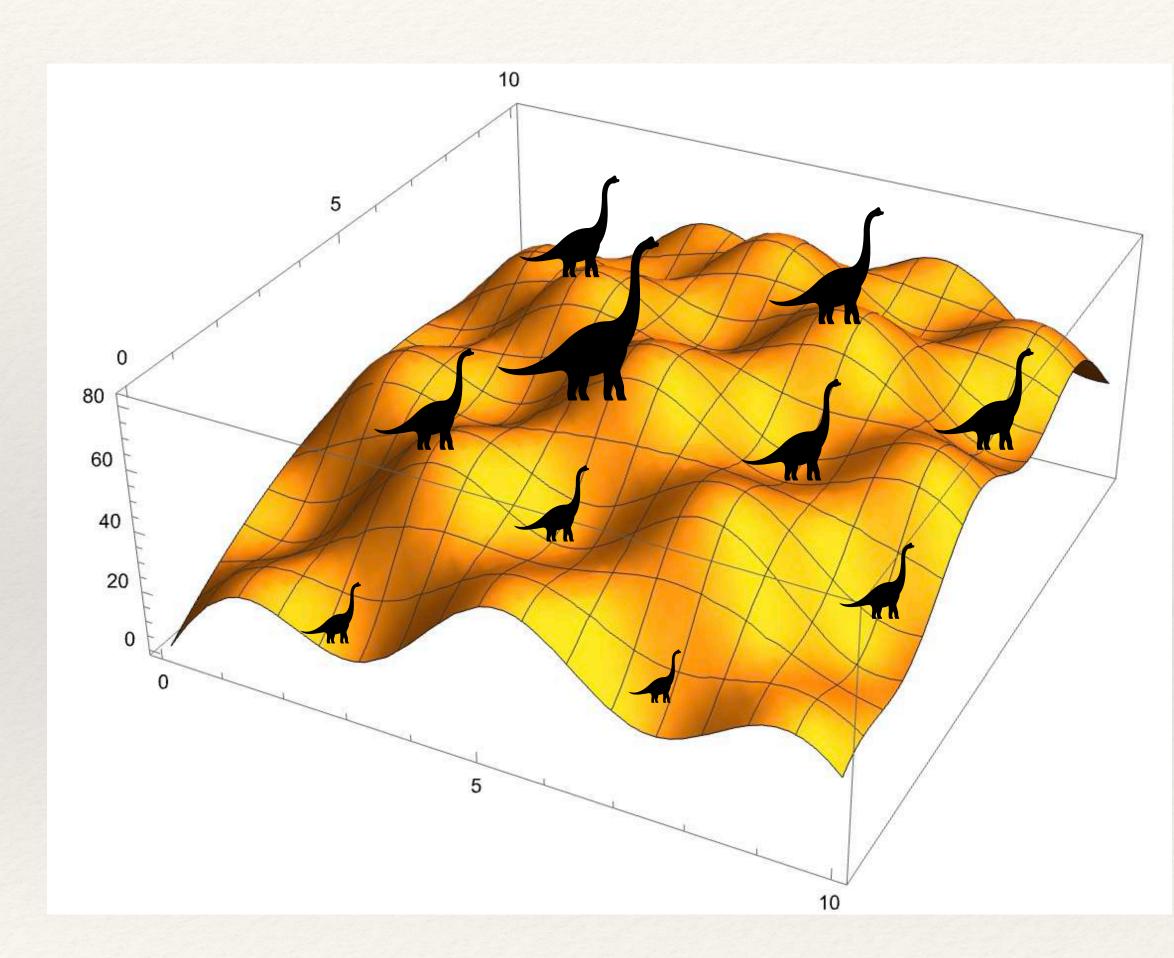
$$f(x,y) = 12\left(\cos\frac{3y}{2}\,\sin\frac{3x}{2} + x + y\right) - x^2 - y^2.$$

Define a creature and its genotype:

$$Genotype \rightarrow (x,y) \qquad x = a.bcdef \dots \\ y = g.hijkl \dots$$

$$Phenotype \rightarrow f(x,y)$$

Example: find global maximum to 250 decimal places without using calculus



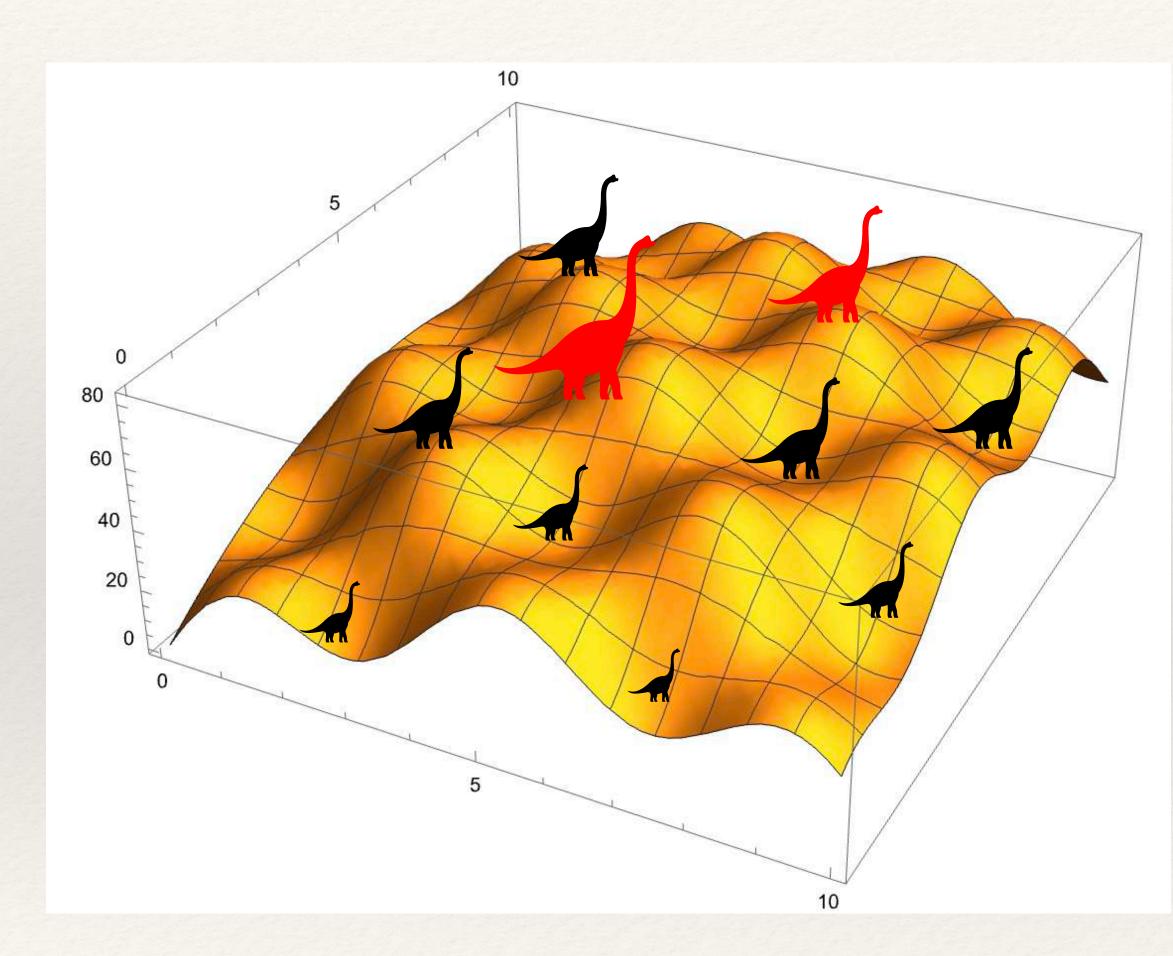
$$f(x,y) = 12\left(\cos\frac{3y}{2}\,\sin\frac{3x}{2} + x + y\right) - x^2 - y^2.$$

Step 0: population and fitness

Define a population and the **fitness function** *F*.

Simplest choice: F = f(x,y)

Example: find global maximum to 250 decimal places without using calculus



$$f(x,y) = 12\left(\cos\frac{3y}{2}\sin\frac{3x}{2} + x + y\right) - x^2 - y^2.$$

Step 1: Selection

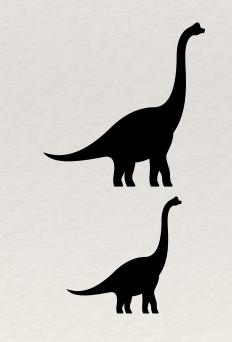
Select pairs for breeding such that the **most fit** individuals can **breed several times**, while unfit ones might not breed at all: e.g. "roulette wheel" based on *ranking k*, with $P_1 = \alpha P_{N_{\text{pop}}}$:

$$P_{k} = \frac{2}{(1+\alpha)} \left(1 + \frac{N_{\text{pop}} - k}{N_{\text{pop}} - 1} (\alpha - 1) \right)$$

Example: find global maximum to 250 decimal places without using calculus

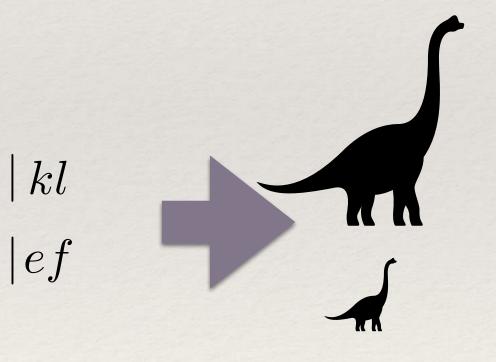
Step 2: Breeding

Cut and splice genotypes of breeding pairs somehow (not really crucial how) to make an entirely new population of the same size.



g.hij | kla.bcd | ef

$$f(x,y) = 12\left(\cos\frac{3y}{2}\,\sin\frac{3x}{2} + x + y\right) - x^2 - y^2.$$



Example: find global maximum to 250 decimal places without using calculus

Step 3: Mutation

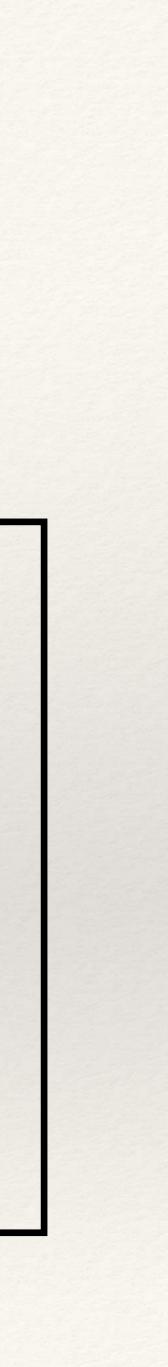
Mutation of a randomly chosen small percentage of digits (alleles)

Step 4:

Do the same thing again from step 1.

$$f(x,y) = 12\left(\cos\frac{3y}{2}\,\sin\frac{3x}{2} + x + y\right) - x^2 - y^2.$$

a.bcdef'gfti'j.j...



Example: find global maximum to 250 decimal places without using calculus

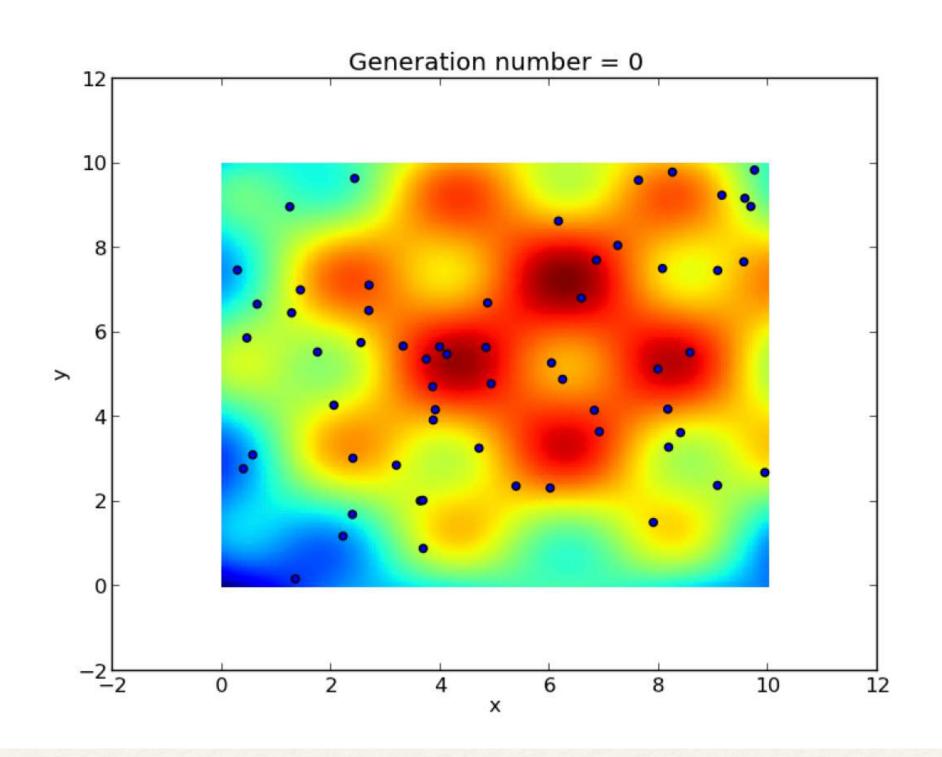
Summary

- 1. Selection (favours the optimisation);
- 2. Breeding/crossover (propagates favourable properties);
- 3. Mutation (prevents stagnation: evolution proceeds by punctuated equilibria)

$$f(x,y) = 12\left(\cos\frac{3y}{2}\,\sin\frac{3x}{2} + x + y\right) - x^2 - y^2.$$

Example: find global maximum to 250 decimal places without using calculus

$$f(x,y) = 12\left(\cos\frac{3y}{2}\,\sin\frac{3x}{2} + x + y\right) - x^2 - y^2.$$



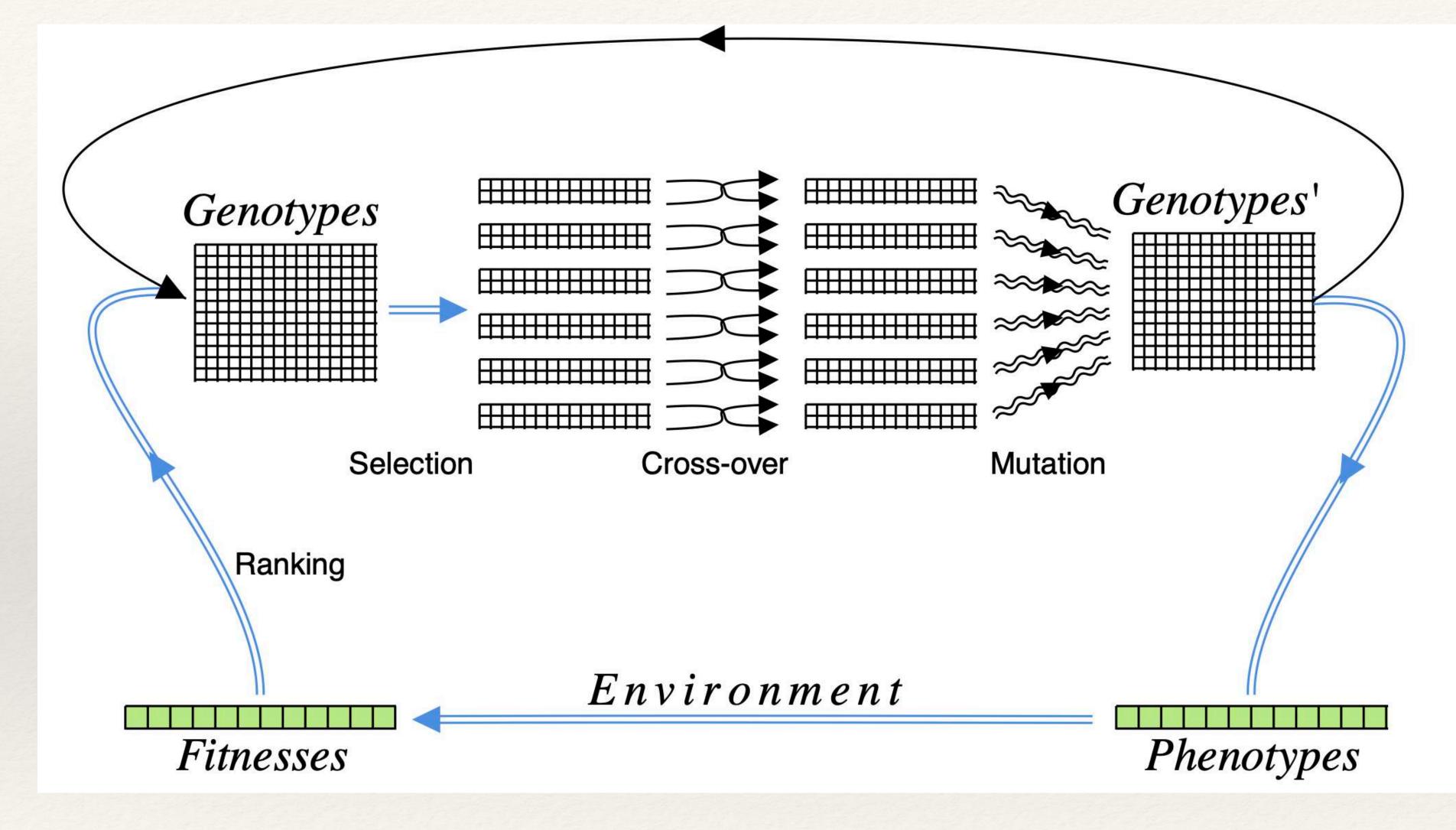
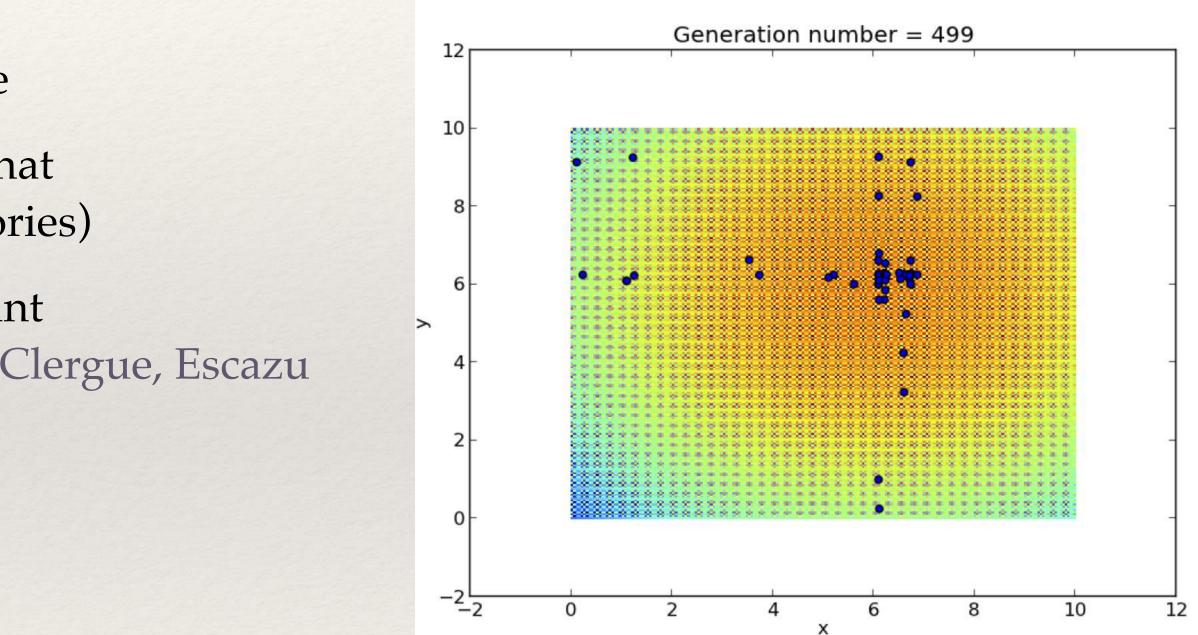


Diagram representing classical GA.

Why do they work?

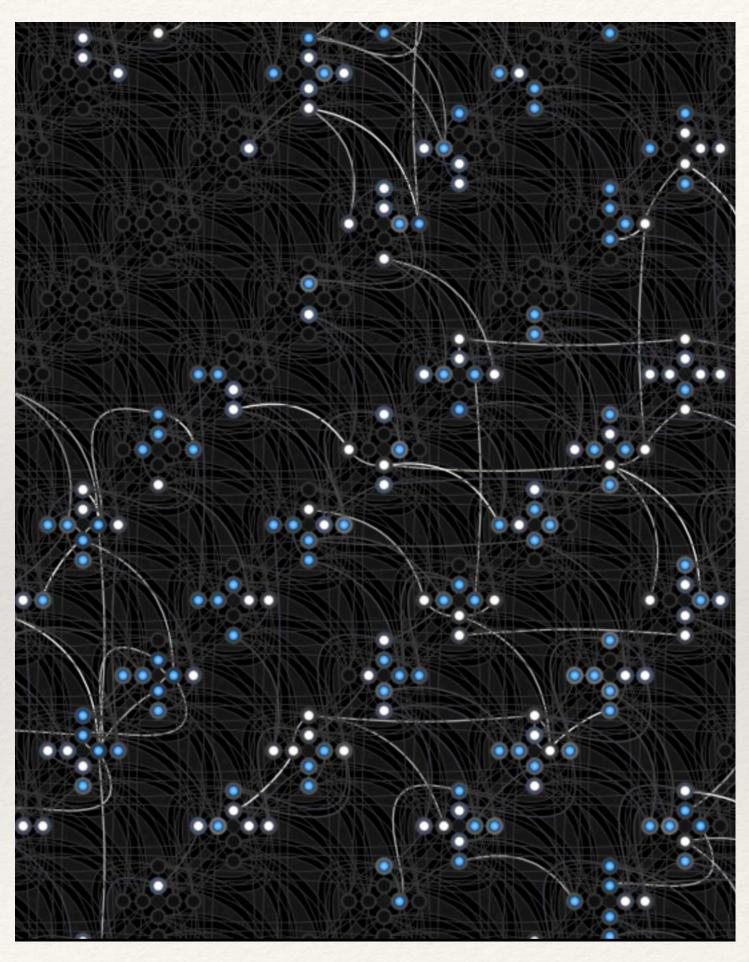
- Holland proposed a probabilistic explanation for the efficiency of genetic algorithms: based on growth rate of "good" schema *S* , e.g. here S = 61 * * * 62 * * *
- Holland argues that initial growth of a good schema in the population is exponential
- Selection pushes towards convergence
- Mutation pushes system away from convergence
- Some controversy in 1990s, rehabilitated somewhat by Poli. (Not many good general competing theories)
- Fitness/distance correlation seems to be important Holland; David; Jones+Forrest; Collard, Gaspar, Clergue, Escazu



In this example the leading digits of x and y are schemata and get propagated throughout the population

Quantum computing has a long and distinguished history but is only now becoming practicable. (Feynman '81, Zalka '96, Jordan, Lee, Preskill ... see Preskill 1811.10085 for review). Two main types of Quantum Computer:

Туре	Discrete Gate	Quantum Annealer
Property	Universal (any quantum algorithm can be expressed)	Not universal — certain quantum systems
How?	IBM - Qiskit ~50 Qubits	DWave - LEAP ~7000 Qubits
What?		
	$ \psi_{ABC}\rangle$	

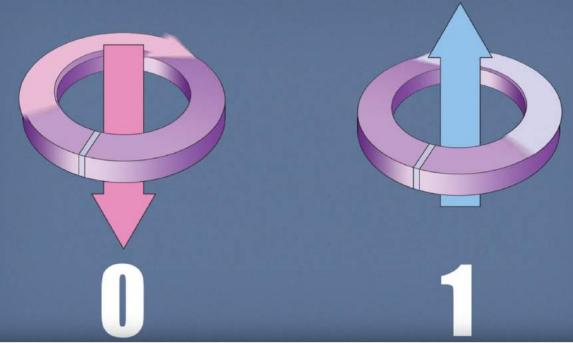


• What is?

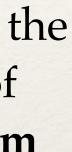
Quantum annealing (QA) is an **optimisation process** for finding the global minimum of a given objective function over a given set of candidate solutions (candidate states), by a process using quantum fluctuations

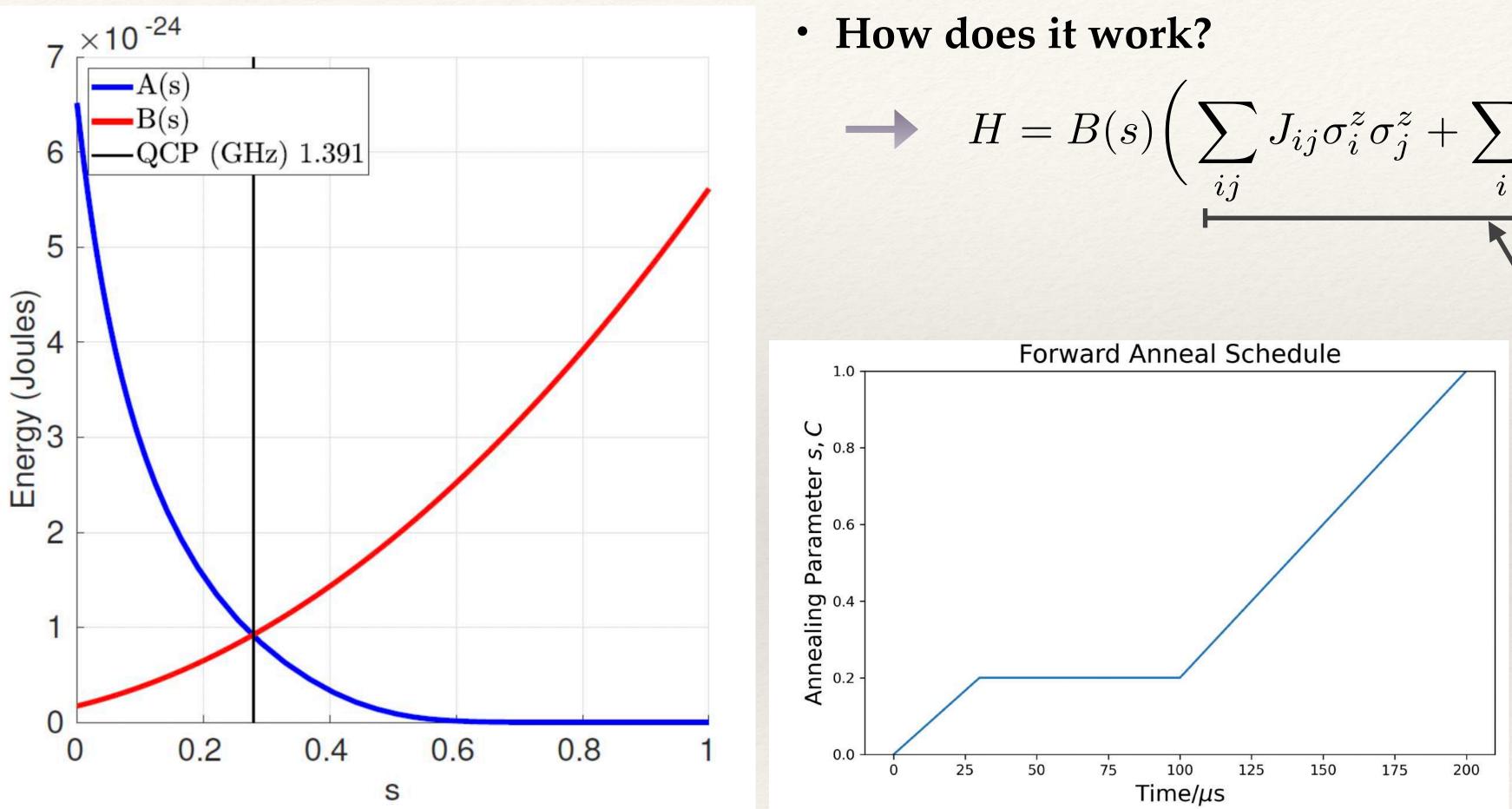
Every problem which can be formulated as an **optimisation task** and can be encoded as an **Ising model**.

Dwave's Advantage_system4.1, Pegasus structure



• What kind of problems can we solve?





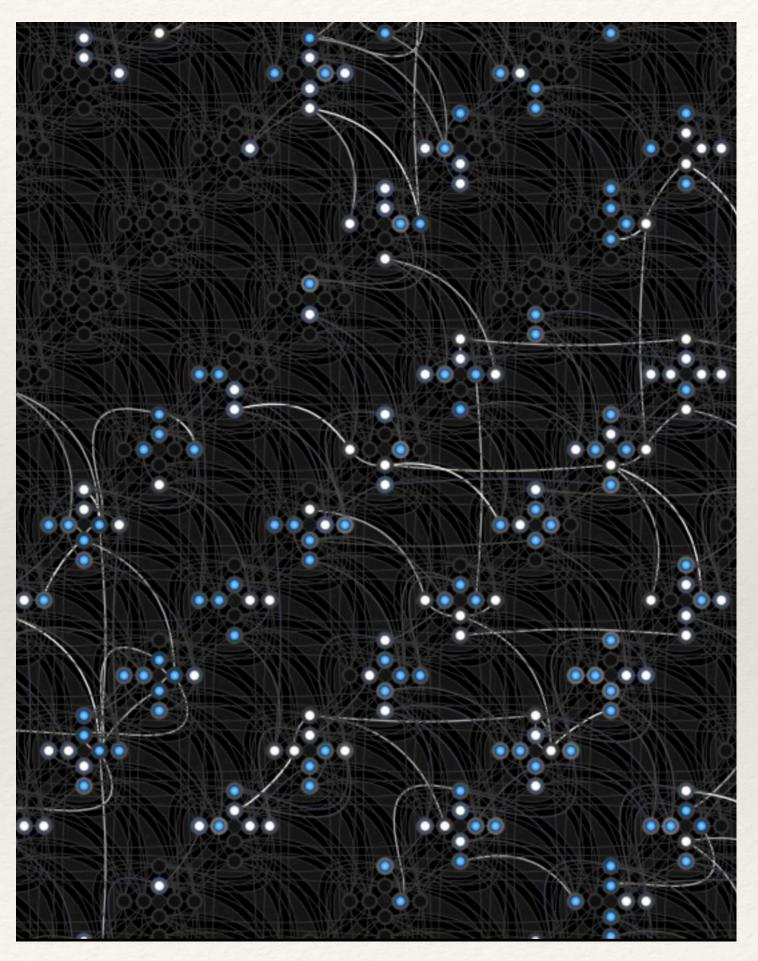
 $\longrightarrow \quad H = B(s) \left(\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z + \sum_i h_i \sigma_i^z \right) + A(s) \sum_i \sigma_i^x$

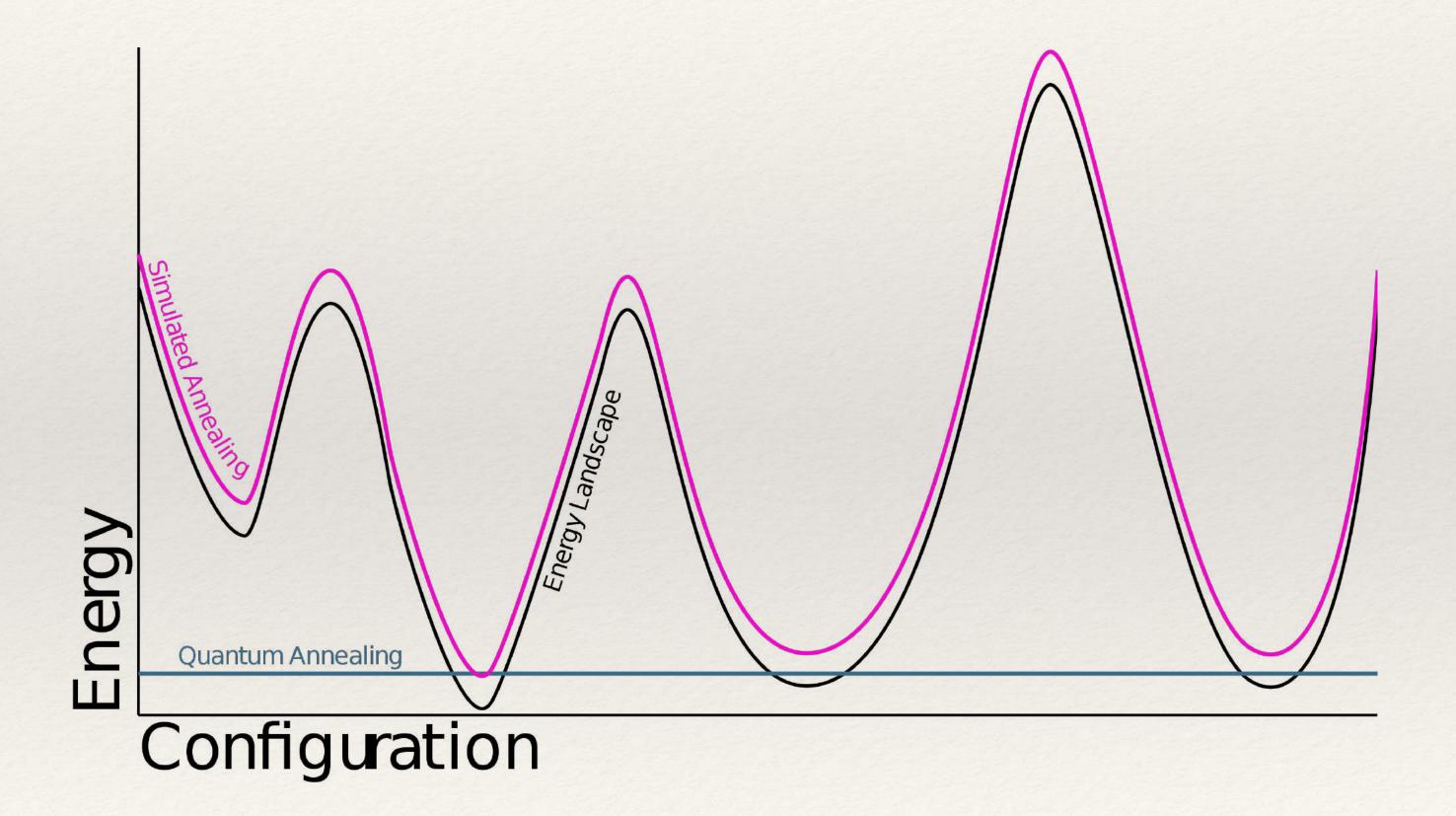
Problem Hamiltonian

Ground state: answer to the problem we are trying to solve

Tunneling Hamiltonian

Ground state: all qubits in a superposition of states





Dwave's Advantage_system4.1, Pegasus structure

Where is the advantage against classical techniques? It can find the global minimum by **tunnelling**.

• To do this we would simply fill h and J and call the quantum annealer from python as folows: response = sampler.sample_ising(h, J, seed=1234+i, num_reads=3000000, num_sweeps=1)

• "response" is a list of [+1,-1,+1,+1] spins ordered by energy

• However the architecture (connectivity of J,h) is limited.

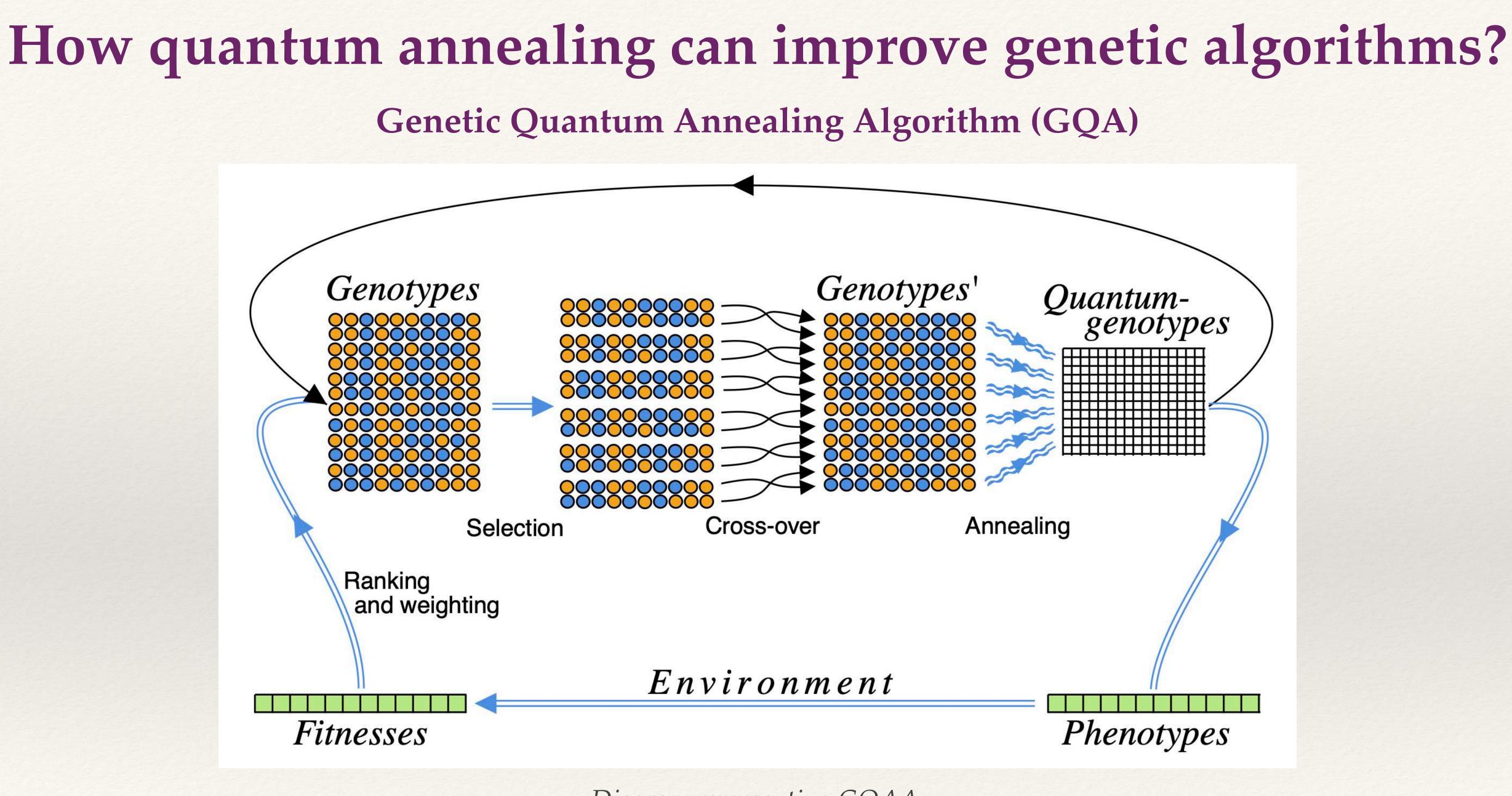
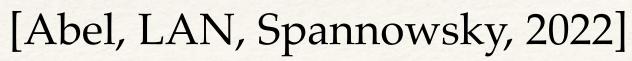


Diagram representing GQAA.



How quantum annealing can improve genetic algorithms? **Classical vs Quantum Genotype**



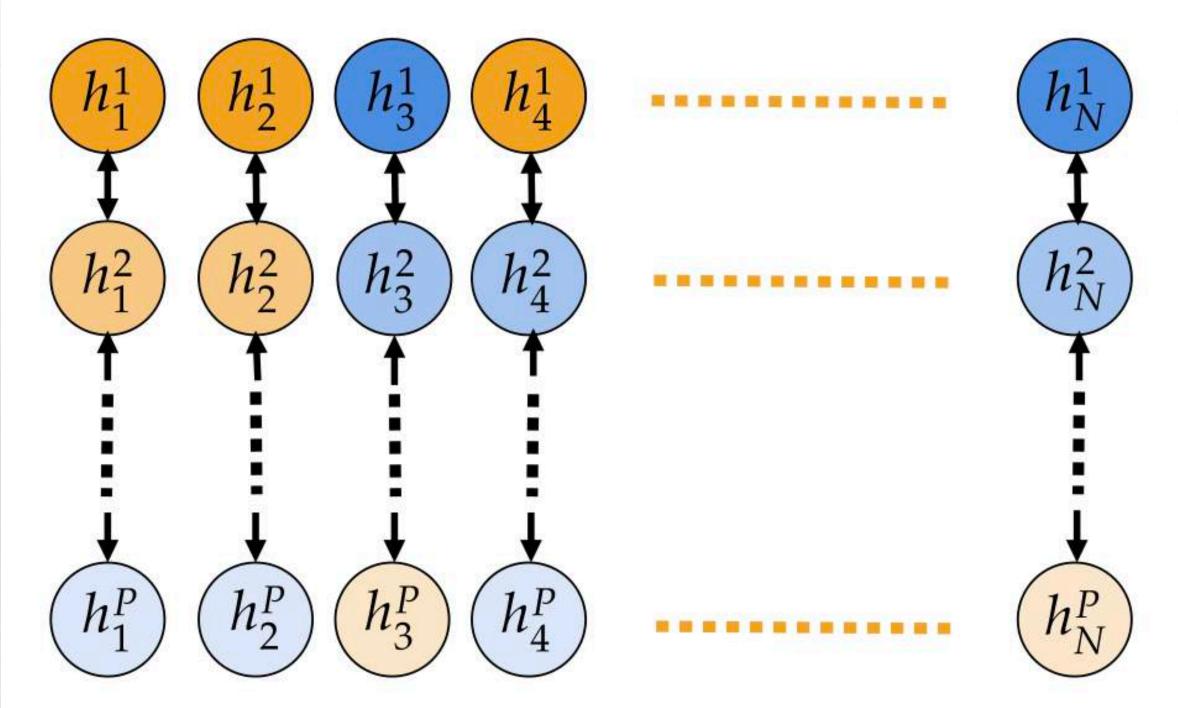
Representation of an individual member of the population in the GQAA.

Fitter individuals have larger modulus enforcing their biasing more strongly.

For example the following linear weighting

$$|h_i| = \alpha_p \left(\frac{\alpha - 1}{N_{pop} - 1} i + 1 \right), \quad i = 0, ..., N_{pop}$$

How quantum annealing can improve genetic algorithms? Putting the population on the annealer



population completely dominate the evolution very early

Fittest

2nd fittest

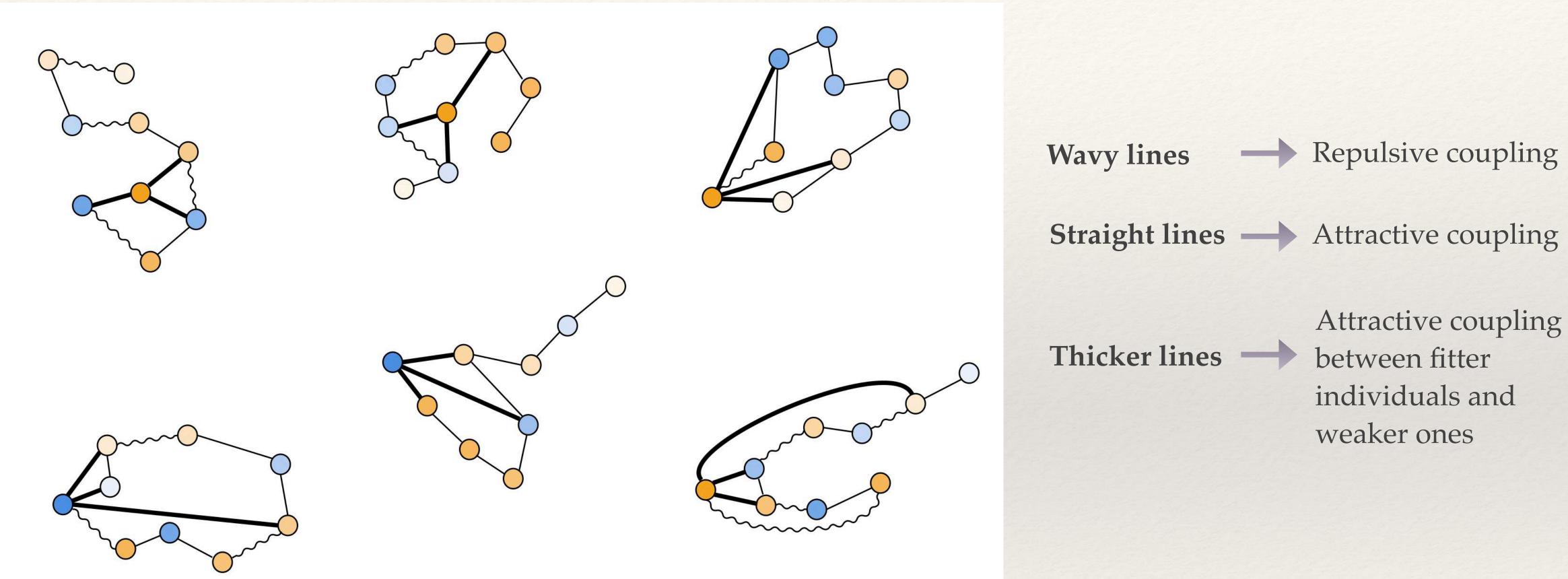
Least fit

• The ranking is based on the fitness of their **parents** (*nepotism*)

• The quadratic couplings in the quantum annealer allow the individuals to 'see' the rest of the population

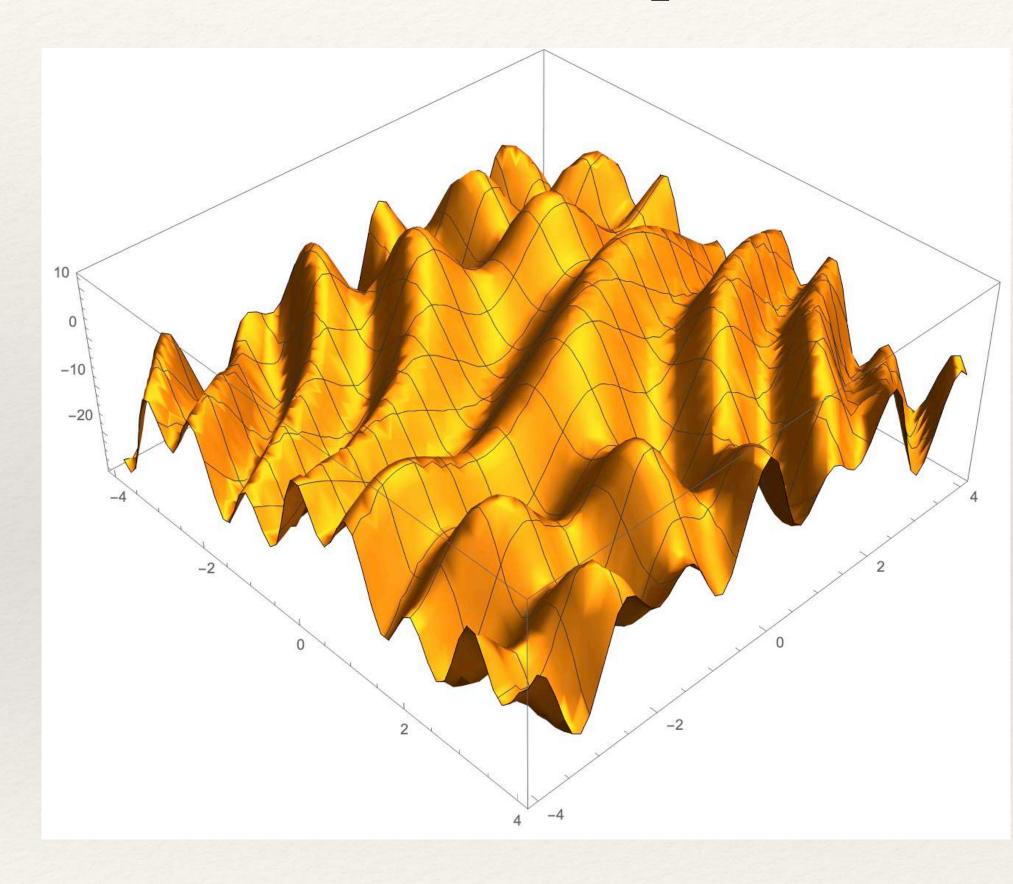
• Not an optimal configuration: leads to very rapid convergence and stagnation; the fittest members of the

How quantum annealing can improve genetic algorithms? Putting the population on the annealer



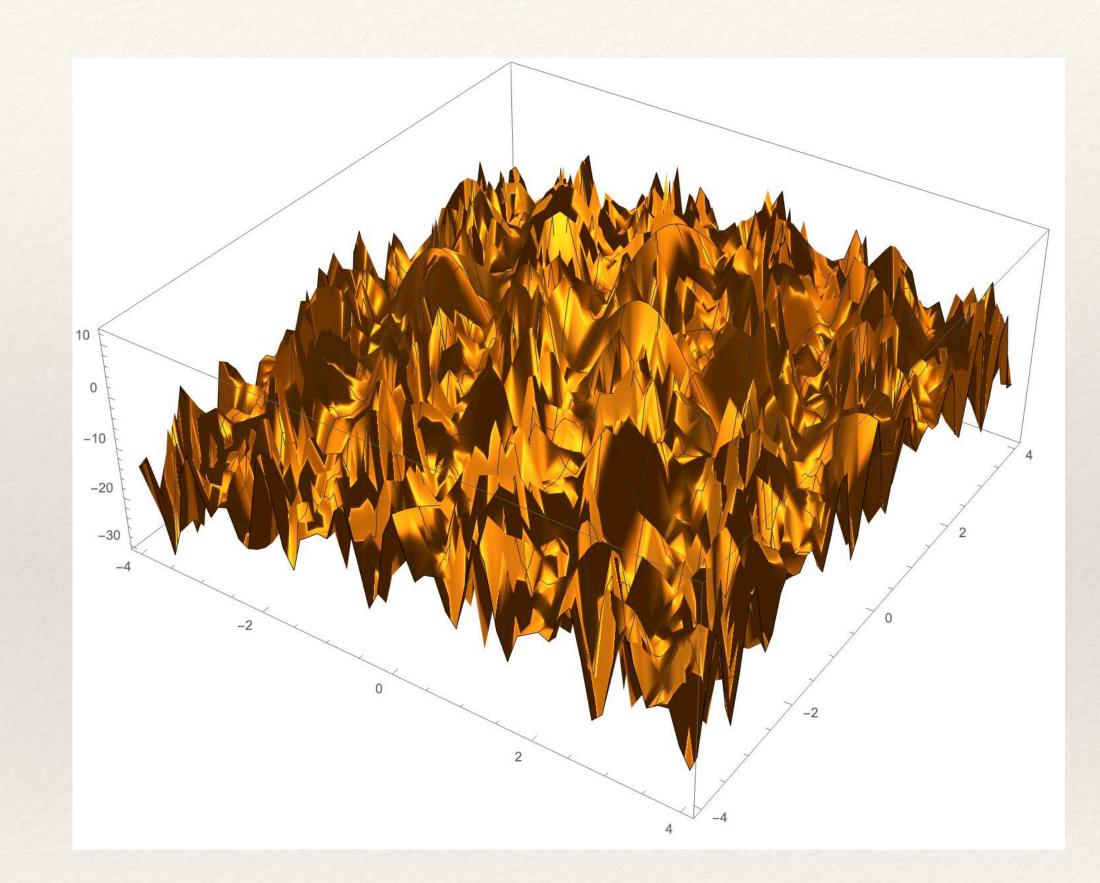
Example of the topology we used in the annealer.

Maximising $U_{\kappa}(x,y) \equiv \frac{1}{2} (x(1-x) + y(1-y)) + 12\cos(\kappa xy)\sin(2x+y) \text{ in [-4,4]} \times [-4,4].$



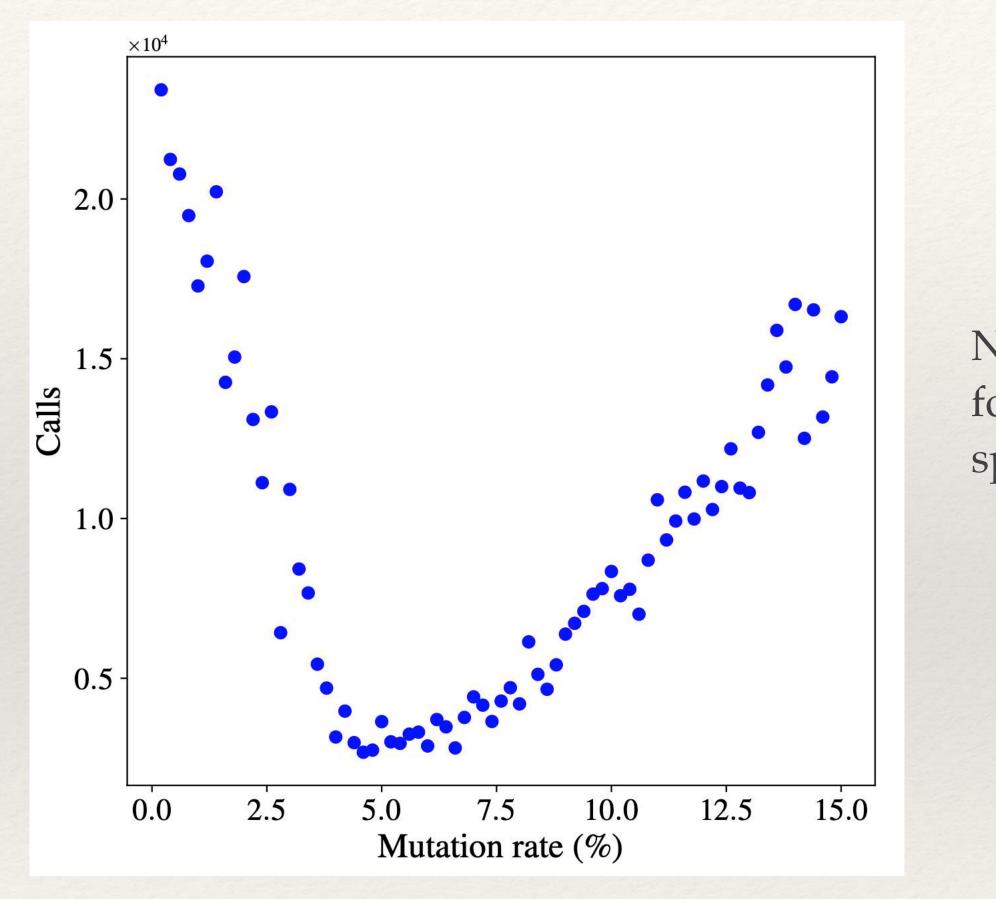
 $\kappa = 1$

First task



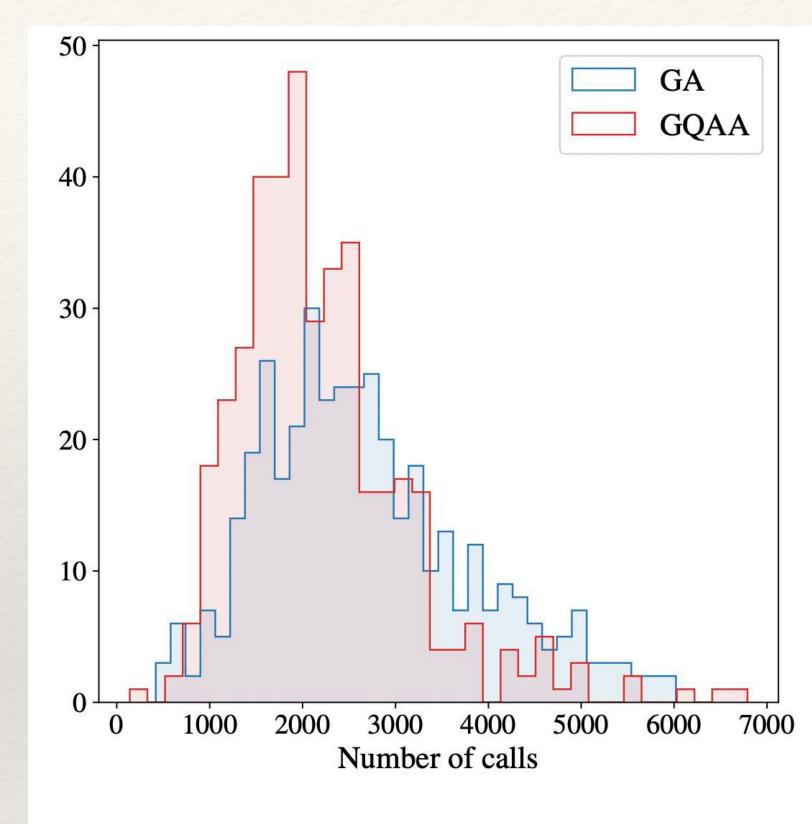
 $\kappa = 20$

GA vs GQAA Optimising GA



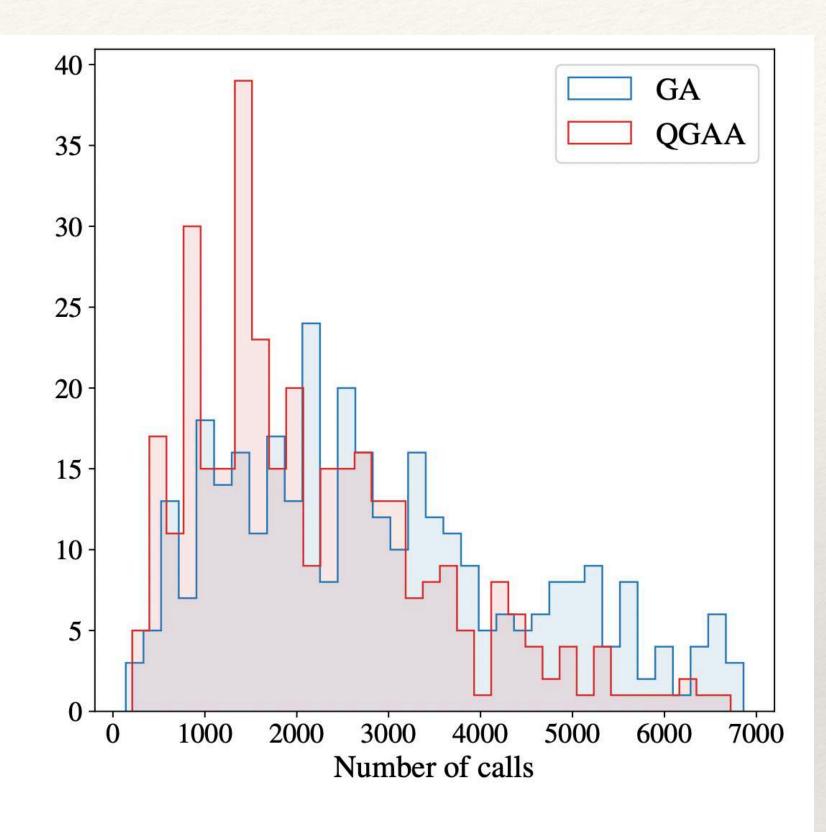
Number of calls (generation * N_{pop}) required to find a solution for different mutation rates for the classical GA. For this specific problem the best mutation rate is around 5%.

How quantum annealing can improve genetic algorithms? Results



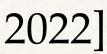
(a) $\kappa = 1$

Average number of calls: GA —> 2690 GQAA —> 2240

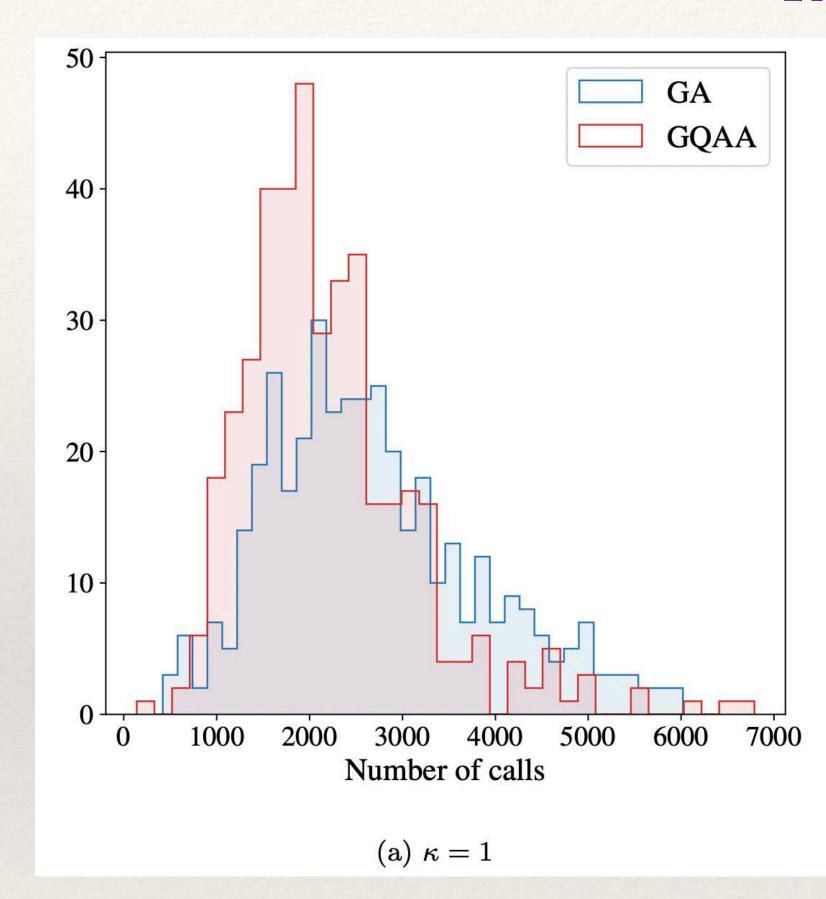


(b) $\kappa = 20$

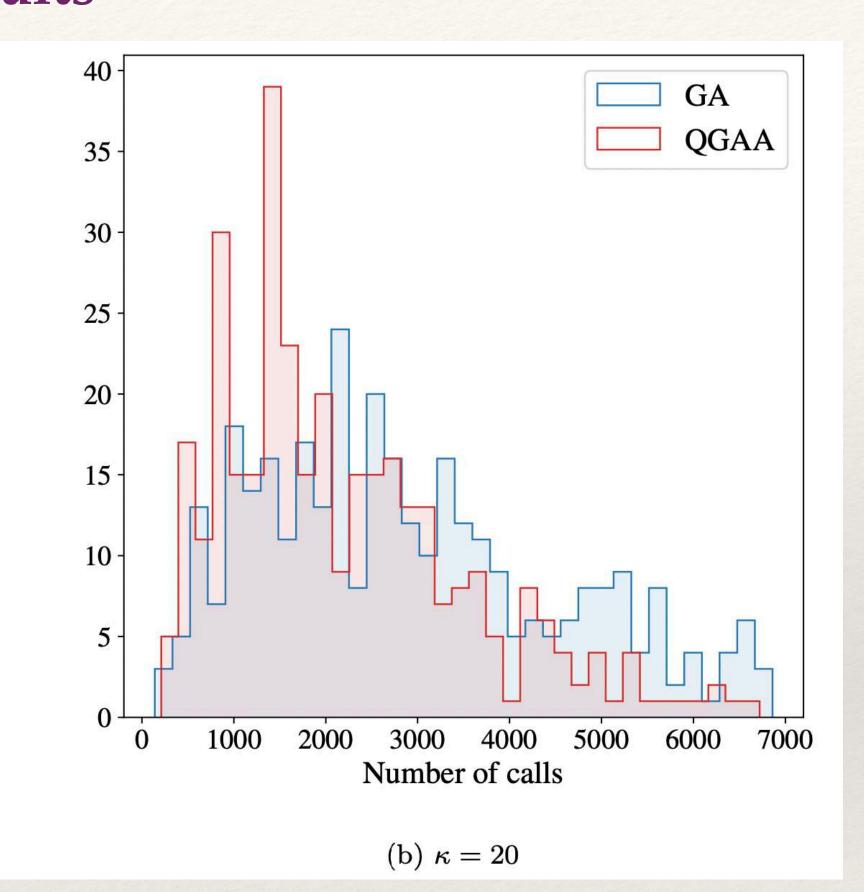
Average number of calls: GA —> 2883 GQAA —> 2186

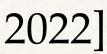


How quantum annealing can improve genetic algorithms? Results



On average **GA fails** (does not find a solution within the first 7000 calls) in ~20% of cases. This percentage reduces to ~7% in the **GQAA** case.





Second task: Taxicab numbers

 $Ta(2) = 1729 = 1^3 + 12^3 = 9^3 + 10^3$ (Ramanujan-Hardy) $Ta(3) = 87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3$ Ta(6) = 24153319581254312056344 $= 28906206^3 + 582162^3$ $= 28894803^3 + 3064173^3$ $= 28657487^3 + 8519281^3$ $= 27093208^3 + 16218068^3$ $= 26590452^3 + 17492496^3$ $= 26224366^3 + 18289922^3$ (2003)

For Ta($n \ge 7$) only upper bounds are known.

"Taxicab" numbers are numbers that can be expressed in more than one way as sums of equal powers.

(1957)

Generalised Taxicab numbers

Unsolved problem in mathematics: (5,2,2) numbers

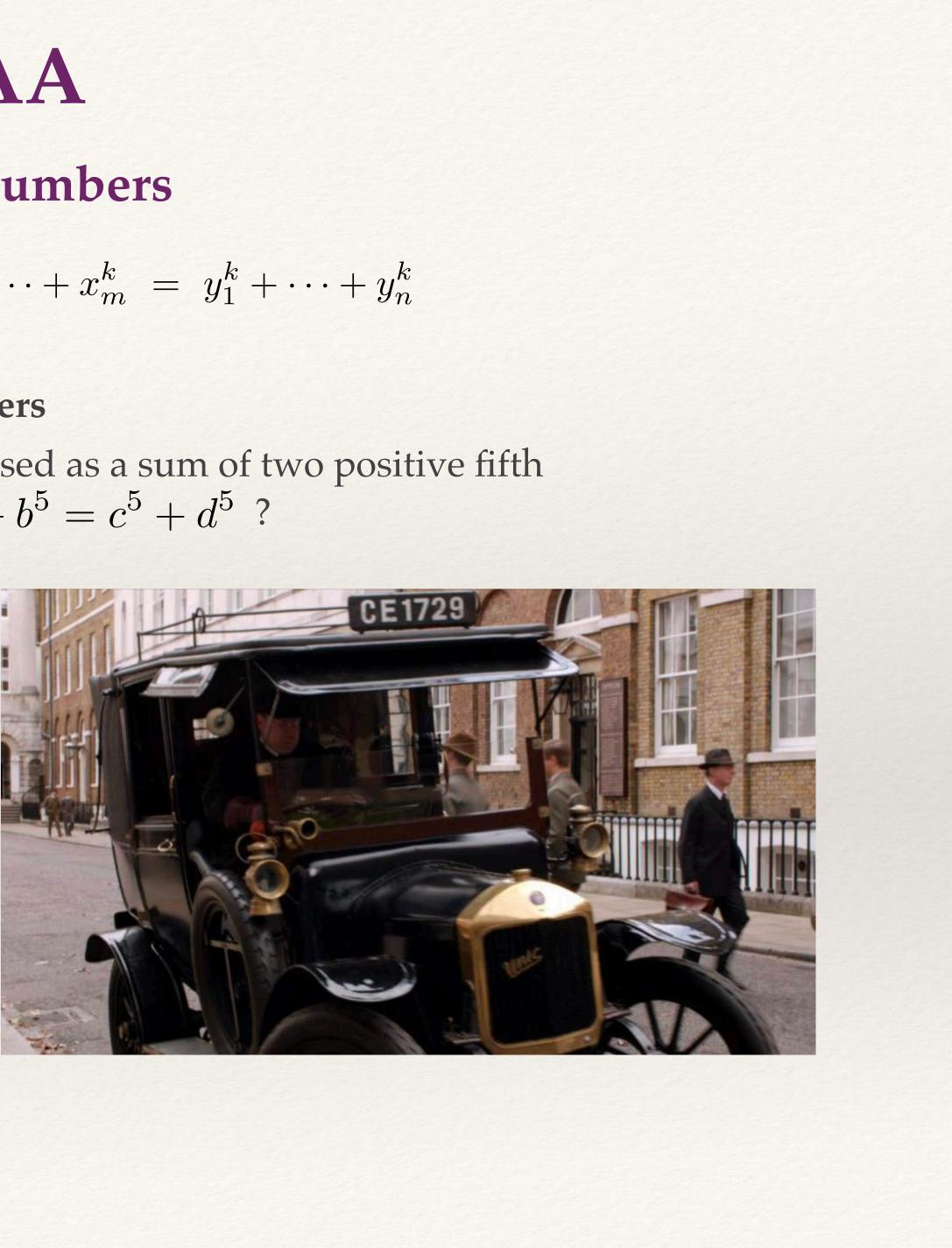
powers in at least two different ways, *i.e.*, $a^5 + b^5 = c^5 + d^5$?

(3,7,7) and (3,8,8) numbers:

We discovered some apparently **new** Taxicab numbers of this kind with a different technique. [Abel, LAN, Fortschritte der Physik, 2022]

(k,m,n) numbers are such that $(k,m,n) \equiv x_1^k + \cdots + x_m^k = y_1^k + \cdots + y_n^k$

Does there exist any number that can be expressed as a sum of two positive fifth



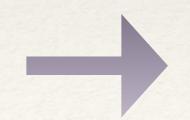
Generalised Taxicab numbers

Unsolved problem in mathematics: (5,2,2) numbers

powers in at least two different ways, *i.e.*, $a^5 + b^5 = c^5 + d^5$?

(3,7,7) and (3,8,8) numbers:

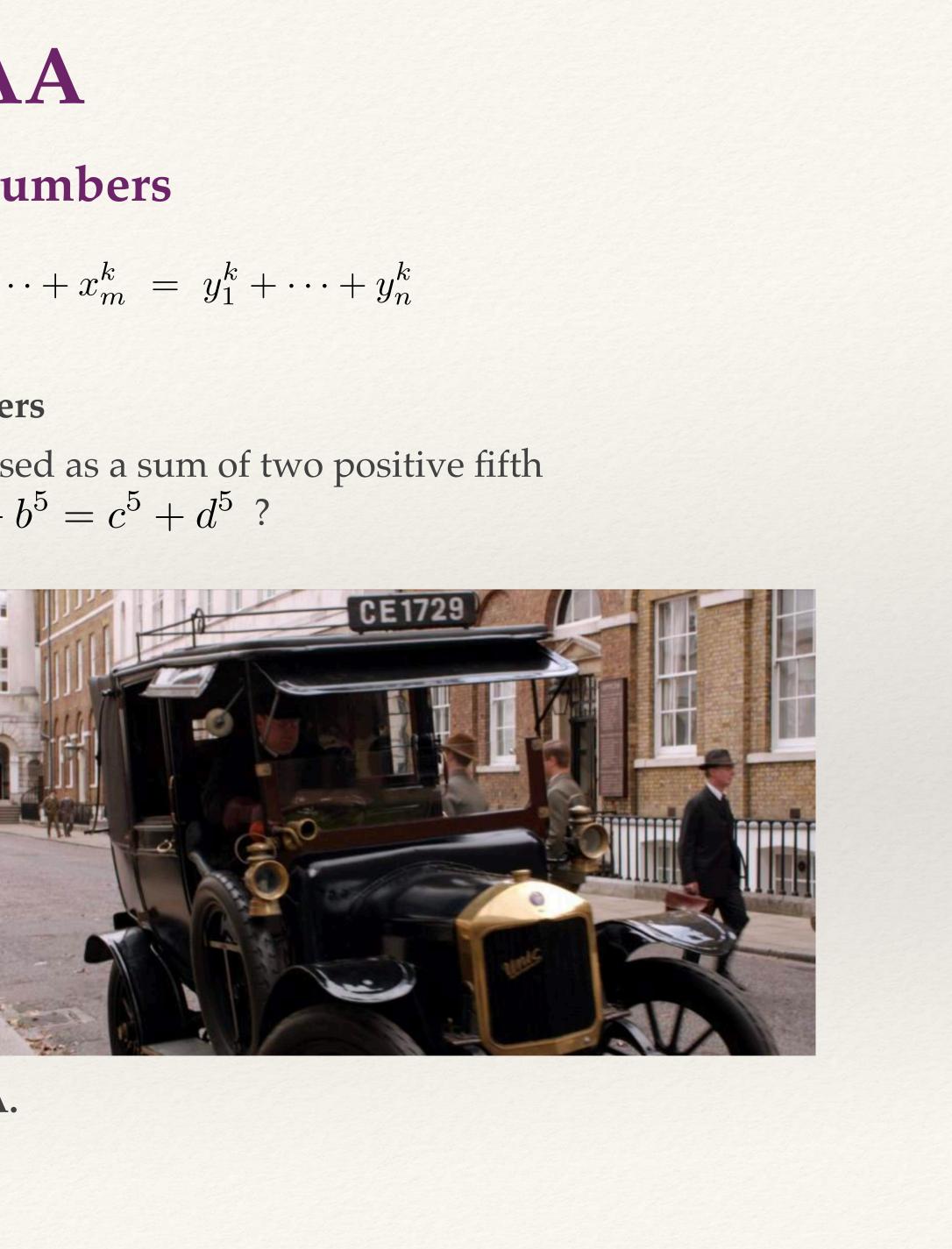
We discovered some apparently **new** Taxicab numbers of this kind with a different technique. [Abel, LAN, Fortschritte der Physik, 2022]



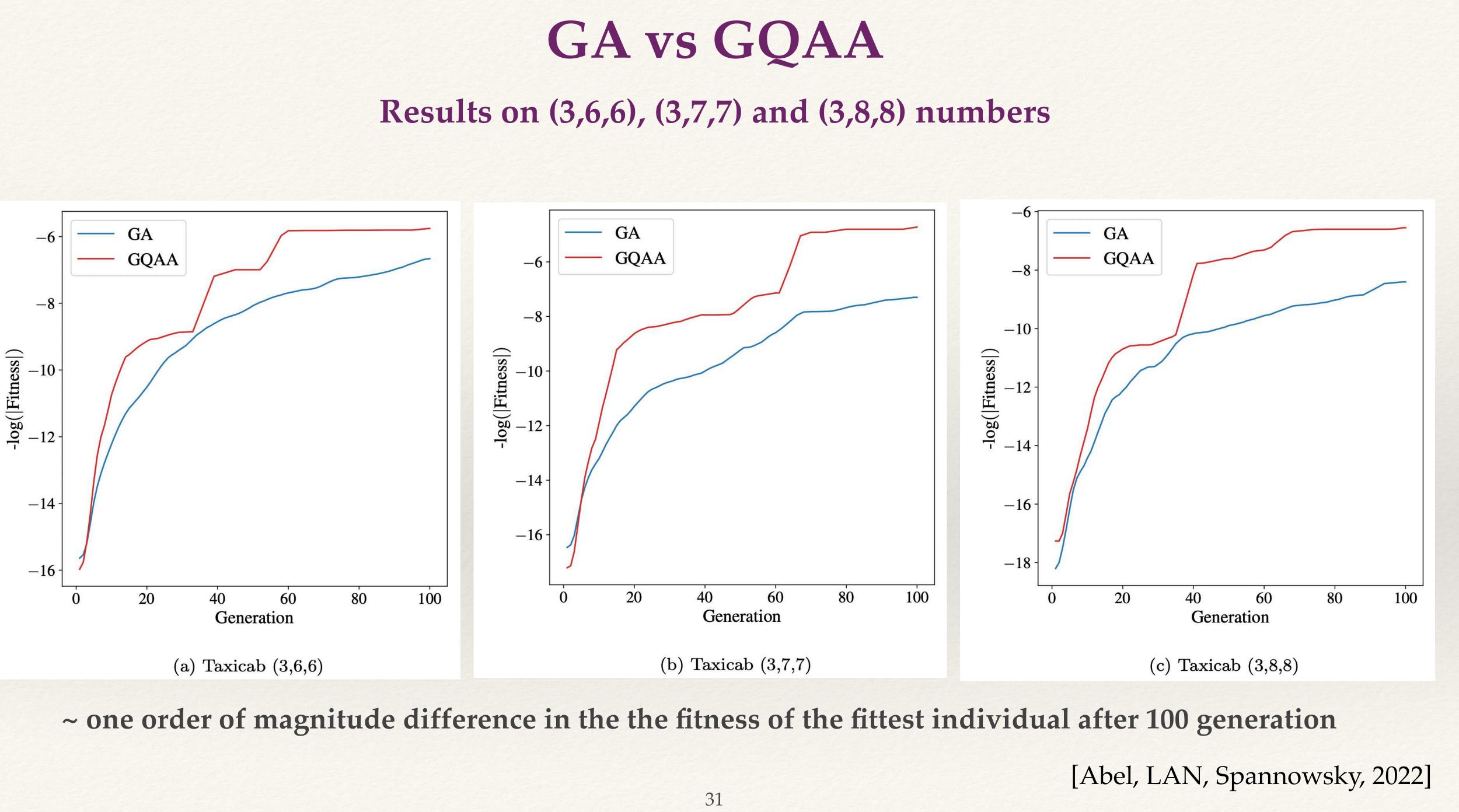
We shall focus on the same problem using GQA.

(k,m,n) numbers are such that $(k,m,n) \equiv x_1^k + \cdots + x_m^k = y_1^k + \cdots + y_n^k$

Does there exist any number that can be expressed as a sum of two positive fifth



GA vs GQAA Results on (3,6,6), (3,7,7) and (3,8,8) numbers



Conclusions and Outlook

annealing

problem than a classical GA

* We developed an hybrid technique using genetic algorithms and quantum

* We find the algorithm to be significantly more powerful on several simple

* Apply this technique to physical problems (e.g. string theory landscape,...)

Thanks for your attention