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Motivation

* Genetic algorithms (GA) are a valid tools to tackle search and
optimisation problems (from sudoku puzzles to string theory landscapes...)

» However, for some problems, the search space can be very large
(e.q. string theory landscapes ~ 10°90)

» Classical genetic algorithms may not be efficient
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* Genetic algorithms (GA) are a valid tools to tackle search and
optimisation problems (from sudoku puzzles to string theory landscapes...)

» However, for some problems, the search space can be very large
(e.q. string theory landscapes ~ 10°90)

» Classical genetic algorithms may not be efficient

Can we construct an enhanced version of genetic algorithms using
quantum computing?



Outline

* Background on Genetic Algorithms (GA)
* Introduction to Quantum Annealing

* The combined technique: Genetic Quantum Annealing (GQA)

* GA vs GOQA



Background on Genetic Algorithms

A genetic algorithm (GA) is a heuristic search algorithm inspired by the process of natural selection.

Genetic algorithms are used to generate high-quality solutions to optimisation and search problems by
relying on biologically inspired operators such as mutation, crossover and selection.

Example: find global maximum to 250 decimal places without using calculus
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https://en.wikipedia.org/wiki/Search_algorithm

Background on Genetic Algorithms

Example: find global maximum to 250 decimal places without using calculus
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Define a creature and its genotype:
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Background on Genetic Algorithms

Example: find global maximum to 250 decimal places without using calculus
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Step 0: population and fitness
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Background on Genetic Algorithms

Example: find global maximum to 250 decimal places without using calculus
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Step 1: Selection
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Select pairs for breeding such that the most fit

60 |
individuals can breed several times, while unfit
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ones might not breed at all: e.g. “roulette wheel”
based on ranking k, with P, = aPyn_
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Background on Genetic Algorithms

Example: find global maximum to 250 decimal places without using calculus
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Step 2: Breeding

Cut and splice genotypes of breeding pairs somehow (not really crucial how) to make an entirely new population

of the same size.
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Background on Genetic Algorithms

Example: find global maximum to 250 decimal places without using calculus
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Step 3: Mutation

Mutation of a randomly chosen small percentage of digits (alleles)

JJ a.bede fafii'ij...

Step 4:

Do the same thing again from step 1.
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Background on Genetic Algorithms

Example: find global maximum to 250 decimal places without using calculus
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Summary
1. Selection (favours the optimisation);
2. Breeding/crossover (propagates favourable properties);

3. Mutation (prevents stagnation: evolution proceeds by punctuated equilibria)
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Background on Genetic Algorithms

Example: find global maximum to 250 decimal places without using calculus
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Background on Genetic Algorithms
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Diagram representing classical GA.

13



Why do they work?

Holland proposed a probabilistic explanation for the efficiency of genetic algorithms: based
on growth rate of “good” schema S, e.g. here S = 61 * * * 62 % *x

Holland argues that initial growth of a good schema in the population is exponential

Selection pushes towards convergence

Generation number = 499

12

Mutation pushes system away from convergence
10

Some controversy in 1990s, rehabilitated somewhat
by Poli. (Not many good general competing theories)

Fitness/distance correlation seems to be important
Holland; David; Jones+Forrest; Collard, Gaspar, Clergue, Escazu af

In this example the leading
digits of x and y are schemata
and get propagated throughout

the population
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Introduction to Quantum Annealing

Quantum computing has a long and distinguished history but is only now becoming practicable. (Feynman’81,
Zalka '96, Jordan, Lee, Preskill ... see Preskill 1811.10085 for review). TWo main types of Quantum Computer:

Type Discrete Gate Quantum Annealer

.............................................................................................................................................................................

Universal (any ~ Not universal —

Property guantum algorithm  certain quantum
~canbe expressed) systems

How? IBM - Qiskit ~ DWave - LEAP

~50 Qubits ~~ ~7000 Qubits

N

=~
ﬂ l'— S \m.,e, M
2

T

i ;m‘.mun

tdu‘iu‘lu’lim
=~ TN

il mm
/ a‘\4f|,,j|n,:~n

2z
SEE
=
lue;

15



Introduction to Quantum Annealing

 What is?

» Quantum annealing (QA) is an optimisation process for finding the
global minimum of a given objective function over a given set ot
candidate solutions (candidate states), by a process using quantum

fluctuations

* What kind of problems can we solve?

Every problem which can be formulated as an optimisation task and
can be encoded as an Ising model.

Dwave’s Advantage_system4.1, Pegasus structure
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Introduction to Quantum Annealing
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* How does it work?
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Problem Hamiltonian

Ground state: answer to the
problem we are trying to
solve

Tunneling Hamiltonian

Ground state: all qubits in a
superposition of states



Introduction to Quantum Annealing

* Where is the advantage against classical techniques?

[t can find the global minimum by tunnelling.

Quantum Annealing

\/

Configuation

Dwave’s Advantage_system4.1, Pegasus structure
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Introduction to Quantum Annealing

e To do this we would simply fill h and J and call the quantum annealer from python as

f()”OWS: response = sampler.sample_ising(h,J, seed=1234+1i,num_reads=3000000, num_sweeps=1)

e “response” is a list of [+1,-1,+1,+1 .....] spins ordered by energy

e However the architecture (connectivity of J,h) is limited.
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How quantum annealing can improve genetic algorithms?
Genetic Quantum Annealing Algorithm (GQA)
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Diagram representing GOAA. [Abel, LAN, Spannowsky, 2022]
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How quantum annealing can improve genetic algorithms?

Classical vs Quantum Genotype

Fitter individuals have larger modulus enforcing their

Genotype St
c RN biasing more strongly.
% — For example the following linear weighting
1 Quantum- |
o genotype o — : :
N ‘hz| = ap< 1 I 1) ] Z:O,...ijop_l
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Representation of an individual member of
the population in the GOAA.

|Abel, LAN, Spannowsky, 2022]
21



How quantum annealing can improve genetic algorithms?

Putting the population on the annealer

@ @ @ Furtest * The ranking is based on the fitness
of their parents (nepotism)
@ @ @ 2nd fittest

* The quadratic couplings in the
quantum annealer allow the

individuals to ‘see’ the rest of the
@ Least ﬁ t population

» Not an optimal configuration: leads to very rapid convergence and stagnation; the fittest members of the
population completely dominate the evolution very early

|Abel, LAN, Spannowsky, 2022]
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How quantum annealing can improve genetic algorithms?

Putting the population on the annealer

Wavy lines =P Repulsive coupling
Straight lines —)» Attractive coupling

Attractive coupling
Thicker lines =» between fitter

individuals and

weaker ones

Example of the topology we used in the annealer.

|Abel, LAN, Spannowsky, 2022]
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Maximising UKJ (QZ‘, y)

GA vs GOAA

First task

(x(1 —z) + y(1 —y)) + 12cos(kxy)sin(2z + y) in[-4,4] x [-4,4].

24
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Number of calls (generation * Nyop) required to find a solution
for different mutation rates for the classical GA. For this
specific problem the best mutation rate is around 5%.

|Abel, LAN, Spannowsky, 2022]



How quantum annealing can improve genetic algorithms?
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How quantum annealing can improve genetic algorithms?

Results
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On average GA fails (does not find a solution within the first 7000 calls) in ~20% of cases.
This percentage reduces to ~7% in the GQAA case.

|Abel, LAN, Spannowsky, 2022]
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GA vs GOAA

Second task: Taxicab numbers

“Taxicab” numbers are numbers that can be expressed in more than one way as sums of equal powers.
Ta(2) = 1729 = 1° +12° = 9° + 10°  (Ramanujan-Hardy)

T2 = S0l = e A =y s b = Ol UlE il

Ta(6) = 24153319581254312056344
—= 28906206 + 582162°
— 28894803° + 3064173
— 28657487 + 85192817
— 27093208° + 16218068"
= 26590452° + 17492496
— 26224366 + 18289922°  (2003)

For Ta(n = 7) only upper bounds are known.
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GA vs GOAA

Generalised Taxicab numbers

(k,m,n) numbers are such that (k,m,n) = a:’f + .-+ :Efn = ylf S e yﬁ

Unsolved problem in mathematics: (5,2,2) numbers

Does there exist any number that can be expressed as a sum of two positive fifth
powers in at least two different ways, i.e., o R

(3,7,7) and (3,8,8) numbers: ey
- - 2k
We discovered some apparently new 2 hlj
Taxicab numbers of this kind with a ERias : "iiii
different technique. 2 4 'H-
|Abel, LAN, Fortschritte der Physik, 2022} ; - ‘
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GA vs GOAA

Generalised Taxicab numbers
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We shall focus on the same problem using GOA.
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GA vs GOAA

Results on (3,6,6), (3,7,7) and (3,8,8) numbers

—6
— GA — — GA = — GA —
— GQAA 64 —— GQAA ™ — GQAA
_8 .
= 10 4
= =
2 —10 %
£ g —12-
= =
B 121 5
- + _14-
14 -
—16 -
- 16 o
—16- —18 -
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation Generation
(c) Taxicab (3,8,8)

(b) Taxicab (3,7,7)

(a) Taxicab (3,6,6)

~ one order of magnitude difference in the the fitness of the fittest individual after 100 generation
|Abel, LAN, Spannowsky, 2022]
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Conclusions and Outlook

* We developed an hybrid technique using genetic algorithms and quantum
annealing

* We find the algorithm to be significantly more powerful on several simple
problem than a classical GA

“ Apply this technique to physical problems (e.g. string theory landscape,...)
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Thanks for your attention



