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Motivation

• Genetic algorithms (GA) are a valid tools to tackle search and 
optimisation problems (from sudoku puzzles to string theory landscapes…) 

• However, for some problems, the search space can be very large 
   (e.g. string theory landscapes ~ 10500)

• Classical genetic algorithms may not be efficient
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Motivation

• Genetic algorithms (GA) are a valid tools to tackle search and 
optimisation problems (from sudoku puzzles to string theory landscapes…) 

• However, for some problems, the search space can be very large 
   (e.g. string theory landscapes ~ 10500)

• Classical genetic algorithms may not be efficient

Can we construct an enhanced version of genetic algorithms using 
quantum computing?
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Outline

• Background on Genetic Algorithms (GA)

• Introduction to Quantum Annealing

• The combined technique: Genetic Quantum Annealing (GQA)

• GA vs GQA
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Background on Genetic Algorithms
A genetic algorithm (GA) is a heuristic search algorithm inspired by the process of natural selection.

Genetic algorithms are used to generate high-quality solutions to optimisation and search problems by 
relying on biologically inspired operators such as mutation, crossover and selection.

Example:

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

find global maximum to 250 decimal places without using calculus

Search space: 10500

https://en.wikipedia.org/wiki/Search_algorithm
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Background on Genetic Algorithms
Example:

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

find global maximum to 250 decimal places without using calculus

Define a creature and its genotype:

Genotype          (x,y) x = a.bcdef …
y = g.hijkl …

Phenotype f(x,y)
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Background on Genetic Algorithms
Example:

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

find global maximum to 250 decimal places without using calculus

Step 0: population and fitness

Define a population and the fitness function F. 

Simplest choice: F = f(x,y)
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Background on Genetic Algorithms
Example:

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

find global maximum to 250 decimal places without using calculus

Step 1: Selection 

Select pairs for breeding such that the most fit 
individuals can breed several times, while unfit 
ones might not breed at all: e.g. “roulette wheel” 
based on ranking k, with                       :<latexit sha1_base64="o3WW7Dao90dIDOAiUXA07+2La3k=">AAACCHicbVDLSsNAFJ34rPVVdenCwSK4KokUdSMU3biSCPYBTQiT6bQdOkmGmRuxhCzd+CtuXCji1k9w5984fSy09cCFwzn3cu89oRRcg21/WwuLS8srq4W14vrG5tZ2aWe3oZNUUVaniUhUKySaCR6zOnAQrCUVI1EoWDMcXI385j1TmifxHQwl8yPSi3mXUwJGCkoHbuDgC+wRIfsEu0F2E2QesAfIZCLzPA9KZbtij4HniTMlZTSFG5S+vE5C04jFQAXRuu3YEvyMKOBUsLzopZpJQgekx9qGxiRi2s/Gj+T4yCgd3E2UqRjwWP09kZFI62EUms6IQF/PeiPxP6+dQvfcz3gsU2AxnSzqpgJDgkep4A5XjIIYGkKo4uZWTPtEEQomu6IJwZl9eZ40TirOaaV6Wy3XLqdxFNA+OkTHyEFnqIaukYvqiKJH9Ixe0Zv1ZL1Y79bHpHXBms7soT+wPn8AKJyZfQ==</latexit>

P1 = ↵PNpop

<latexit sha1_base64="EXnJeVOrmTJrHRWet7usFWAWwQg=">AAACSnicbZDBSxtBFMZn09jGqG3aHr0MDYUEMeyItL0IopeeJEKjQjYsbyezyZDZ3WHmrRiW/fu8ePLmH+Glh5bixUmyhzb2wcDH972PmflFWkmLvv/g1V7VN16/aWw2t7Z33r5rvf9wYbPccDHgmcrMVQRWKJmKAUpU4kobAUmkxGU0O13kl9fCWJmlP3CuxSiBSSpjyQGdFbagH87oEQ1iA7w4KIsO2wtA6Sl0SxpEcjLpUEb3qvwsLAIUN1joTJfl/qxcd1hJO6s63WfdZb8bttp+z18OfSlYJdqkmn7Yug/GGc8TkSJXYO2Q+RpHBRiUXImyGeRWaOAzmIihkykkwo6KJYqSfnbOmMaZcSdFunT/bhSQWDtPIreZAE7terYw/5cNc4y/jQqZ6hxFylcXxbmimNEFVzqWRnBUcyeAG+neSvkUHDV09JsOAlv/8ktxcdBjX3qH54ft45MKR4Pskk+kQxj5So7Jd9InA8LJLXkkv8hv78776f3xnlarNa/qfCT/TK3+DLZAsZ8=</latexit>

Pk =
2

(1 + ↵)

✓
1 +

Npop � k

Npop � 1
(↵� 1)

◆
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Background on Genetic Algorithms
Example:

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

find global maximum to 250 decimal places without using calculus

Step 2: Breeding 

Cut and splice genotypes of breeding pairs somehow (not really crucial how) to make an entirely new population 
of the same size.

g.hij |

a.bcd |ef
kl
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Background on Genetic Algorithms
Example:

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12
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3y

2
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3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

find global maximum to 250 decimal places without using calculus

Step 3: Mutation 

Mutation of a randomly chosen small percentage of digits (alleles)

a.bcdefghij...a.bcdef 0gh0ij...

Step 4:  

Do the same thing again from step 1.
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Background on Genetic Algorithms
Example:

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12
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� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

find global maximum to 250 decimal places without using calculus

Summary 

1. Selection (favours the optimisation); 

2. Breeding/crossover (propagates favourable properties); 

3. Mutation (prevents stagnation: evolution proceeds by punctuated equilibria)
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Background on Genetic Algorithms
Example:

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation
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is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata
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hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.
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find global maximum to 250 decimal places without using calculus
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Background on Genetic Algorithms

Diagram representing classical GA.
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Why do they work?
• Holland proposed a probabilistic explanation for the efficiency of genetic algorithms: based 

on growth rate of “good” schema S , e.g. here

• Holland argues that initial growth of a good schema in the population is exponential

• Selection pushes towards convergence

• Mutation pushes system away from convergence

• Some controversy in 1990s, rehabilitated somewhat                                                                       
by Poli. (Not many good general competing theories)  

• Fitness/distance correlation seems to be important                                                                                   
Holland; David; Jones+Forrest; Collard, Gaspar, Clergue, Escazu

Figure 3. Evolved population of 60 individuals in an “almost discontinuous” extremely choppy

landscape.

Holland argued that schemata are important because selection favours the propagation

of shorter strings of data: small subsections of the genome that confer fitness dominate

first and, once they are shared by the majority of the population, crossover does not a↵ect

them. Indeed this can be observed directly in our previous example: the population tends

to spread along the x and y directions from the solution because in this example the

approximately correct x and y values correspond to only the first few entries of the x and

y chromosomes, which tend to persist even though the entire genome may be disturbed by

crossover.

This can be formalised as follows. Suppose that mutation has just produced in the

population a favourable schema, S. Let n(S, t) be the total number in the population

containing it at time t. We can define the average fitness of all members of the population

containing S, as fS(t) =
P

i2S fi/n(S, t), which is higher than the average fitness of the

population as a whole, f̄ . Assuming that selection is proportional to fitness, f(t), then the

expected number of o↵spring containing S is
P

i2S fi/f̄ . Neglecting crossover and mutation

this would be the expectation of n(S, t+ 1); let us rewrite it as

n(S, t+ 1) = n(S, t)
fS(t)

f̄
. (1.3)

With simple probabilistic arguments one can incorporate the e↵ect of a single-point crossover

destroying S, and mutations at a rate pm per digit to find a lower bound

n(S, t+ 1) � n(S, t)
fS(t)

f̄

✓
1�

d(S)

l � 1

◆
(1� pm)o(S) , (1.4)

– 8 –

In this example the leading 

digits of x and y are schemata 

and get propagated throughout 
the population

<latexit sha1_base64="Ztz1I7b3HT2w5odGtA87aswqkFE=">AAAB+HicbVDLSgMxFL3js9ZHR126CRZBuigzpVQ3QtGNy4r2Ae1QMmmmDc1khiQj1KFf4saFIm79FHf+jWk7C209cC+Hc+4lN8ePOVPacb6ttfWNza3t3E5+d2//oGAfHrVUlEhCmyTikez4WFHOBG1qpjntxJLi0Oe07Y9vZn77kUrFIvGgJzH1QjwULGAEayP17cI9ukI1F5VKpVrFtL5ddMrOHGiVuBkpQoZG3/7qDSKShFRowrFSXdeJtZdiqRnhdJrvJYrGmIzxkHYNFTikykvnh0/RmVEGKIikKaHRXP29keJQqUnom8kQ65Fa9mbif1430cGllzIRJ5oKsngoSDjSEZqlgAZMUqL5xBBMJDO3IjLCEhNtssqbENzlL6+SVqXs1srVu2qxfp3FkYMTOIVzcOEC6nALDWgCgQSe4RXerCfrxXq3Phaja1a2cwx/YH3+AOgLkAU=</latexit>

S = 61 ⇤ ⇤ ⇤ 62 ⇤ ⇤⇤
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Introduction to Quantum Annealing
Quantum computing has a long and distinguished  history but is only now becoming practicable. (Feynman ’81,  
Zalka '96, Jordan, Lee, Preskill … see Preskill 1811.10085 for review). Two main types of Quantum Computer:

Two di↵erent approaches to quantum computing

‘Gate’ based quantum computing

• Discrete quantum operations
on qubits

• Construct ‘circuits’ out of
these gates

• Detect and correct errors to
reduce e↵ect of noise

| ABCi

|0ip1

|0ip2

|0ip3

|0ip4

E

Continuous time

• Map problems directly to
physical system

• Allow quantum physics to
help search solution space

• Low temperature
environment could help
solve problems

Two di↵erent approaches to quantum computing

‘Gate’ based quantum computing

• Discrete quantum operations
on qubits

• Construct ‘circuits’ out of
these gates

• Detect and correct errors to
reduce e↵ect of noise

| ABCi

|0ip1

|0ip2

|0ip3

|0ip4

E

Continuous time

• Map problems directly to
physical system

• Allow quantum physics to
help search solution space

• Low temperature
environment could help
solve problems

Type Discrete Gate Quantum Annealer

Property
Universal (any 

quantum algorithm 
can be expressed)

Not universal — 
certain quantum 

systems

How? IBM - Qiskit

~50 Qubits

DWave - LEAP

~7000 Qubits

What?
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Introduction to Quantum Annealing

Quantum annealing (QA) is an optimisation process for finding the 
global minimum of a given objective function over a given set of 
candidate solutions (candidate states), by a process using quantum 
fluctuations

Dwave’s Advantage_system4.1, Pegasus structure

• What kind of problems can we solve?

Every problem which can be formulated as an optimisation task and 
can be encoded as an Ising model.  

• What is?
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Introduction to Quantum Annealing

• How does it work?
<latexit sha1_base64="97Qu3FIyzqowxzI/BRDTIOJLfbY=">AAACYnicbVHBTtwwEHUCtHRL26Uc24PVFdKiSqsEoZYLEoUL6olKLCBtlsgxQxiwncieIGi0f9kLB258RU91sltEoSNZfnrvzdh+zkqFjqLoNgjn5hdevFx81Xm99Obtu+7y+0NXVFbCUBaqsMeZcKDQwJCQFByXFoTOFBxll7uNfnQF1mFhDuimhLEWucEzlII8lXbNHt/iO323xpMM87zPE1fptMaLCf8+3RKHuRYpnvz8Cy88/Dw1Ij/367GlmbLm5W/tzKnnQb9Ou71oELXFn4N4BnpsVvtp9y45LWSlwZBUwrlRHJU0roUllAomnaRyUAp5KXIYeWiEBjeu21wmfLVyggpeguWoeEvC445aaOdudOadWtC5e6o15P+0UUVnm+MaTVkRGNkcRKigPchJiz5w4KdogUg0NweOhkthBRFY5EJKT1b+Bzo+j/jp65+Dw/VB/GWw8WOjt70zS2aRfWCfWJ/F7CvbZntsnw2ZZL/Y72AumA/uw064HK5MrWEw61lh/1T48Q9Jh7VQ</latexit>

H = B(s)

✓X

ij

Jij�
z
i �

z
j +

X

i

hi�
z
i

◆
+A(s)

X

i

�
x
i

Problem Hamiltonian

Tunneling Hamiltonian

Ground state: all qubits in a 
superposition of states

Ground state: answer to the
problem we are trying to 
solve
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• Where is the advantage against classical techniques?

Dwave’s Advantage_system4.1, Pegasus structure

It can find the global minimum by tunnelling.

Introduction to Quantum Annealing
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Introduction to Quantum Annealing

•To do this we would simply fill h and J and call the quantum annealer from python as 
follows: 


•“response” is a list of [+1,-1,+1,+1 …..] spins ordered by energy


•However the architecture (connectivity of J,h) is limited. 



20

How quantum annealing can improve genetic algorithms?
Genetic Quantum Annealing Algorithm (GQA)

Diagram representing GQAA. [Abel, LAN, Spannowsky, 2022]
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How quantum annealing can improve genetic algorithms?
Classical vs Quantum Genotype

Representation of an individual member of 
the population in the GQAA.

[Abel, LAN, Spannowsky, 2022]

Fitter individuals have larger modulus enforcing their 
biasing more strongly. 
For example  the following linear weighting 

<latexit sha1_base64="EN0HMntDh5x/E8xj3jPcSlfWXPw=">AAACBXicbVA9SwNBEN2LXzF+RS21WAyCRTzuJKiNELSxkgjmA5IQ9jZ7yZK9u2V3TgxHGhv/io2FIrb+Bzv/jZvkCk18MPB4b4aZeZ4UXIPjfFuZhcWl5ZXsam5tfWNzK7+9U9NRrCir0khEquERzQQPWRU4CNaQipHAE6zuDa7Gfv2eKc2j8A6GkrUD0gu5zykBI3Xy+xxfYKdo23bxppO0gD1AIiM5GuFj7HbyBcd2JsDzxE1JAaWodPJfrW5E44CFQAXRuuk6EtoJUcCpYKNcK9ZMEjogPdY0NCQB0+1k8sUIHxqli/1ImQoBT9TfEwkJtB4GnukMCPT1rDcW//OaMfjn7YSHMgYW0ukiPxYYIjyOBHe5YhTE0BBCFTe3YtonilAwweVMCO7sy/OkdmK7p3bptlQoX6ZxZNEeOkBHyEVnqIyuUQVVEUWP6Bm9ojfryXqx3q2PaWvGSmd20R9Ynz8XGZZv</latexit>

i = 0, ..., Npop � 1|hi| = ↵p

✓
↵� 1

Npop � 1
i+ 1

◆
,
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How quantum annealing can improve genetic algorithms?
Putting the population on the annealer

[Abel, LAN, Spannowsky, 2022]

• The ranking is based on the fitness 
of their parents (nepotism)

• The quadratic couplings in the 
quantum annealer allow the 
individuals to ‘see’ the rest of the 
population

• Not an optimal configuration: leads to very rapid convergence and stagnation; the fittest members of the 
population completely dominate the evolution very early
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How quantum annealing can improve genetic algorithms?
Putting the population on the annealer

Example of the topology we used in the annealer.
[Abel, LAN, Spannowsky, 2022]

Wavy lines 

Straight lines

Repulsive coupling

Attractive coupling

Thicker lines
Attractive coupling 
between fitter 
individuals and 
weaker ones
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GA vs GQAA
First task

<latexit sha1_base64="qrVm8h03a9i3r7HIkrUzAZ31Dm0="></latexit>

U(x, y) ⌘ 1

2
(x(1� x) + y(1� y)) + 12 cos(xy) sin(2x+ y)Maximising in [-4,4] x [-4,4].

 = 1  = 20
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GA vs GQAA
Optimising GA 

[Abel, LAN, Spannowsky, 2022]

Number of calls (generation * Npop) required to find a solution 
for different mutation rates for the classical GA. For this 
specific problem the best mutation rate is around 5%.
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How quantum annealing can improve genetic algorithms?
Results

[Abel, LAN, Spannowsky, 2022]

Average number of calls: 
    GA —> 2690 
    GQAA —> 2240 

Average number of calls: 
    GA —> 2883 
    GQAA —> 2186 
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How quantum annealing can improve genetic algorithms?
Results

[Abel, LAN, Spannowsky, 2022]

On average GA fails (does not find a solution within the first 7000 calls) in ~20% of cases.
This percentage reduces to ~7% in the GQAA case.
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GA vs GQAA
Second task: Taxicab numbers

“Taxicab” numbers  are numbers that can be expressed in more than one way as sums of equal powers.
<latexit sha1_base64="XUxl3Ma9Wnhv1oShHXcocALaWGM=">AAACF3icbVDLSgMxFM3UV62vqks3wSJUhDIzLdYuCkU3Liv0BX2RSdM2NPMguSOWoX/hxl9x40IRt7rzb0wfC209EO7JOfeS3OMEgiswzW8jtra+sbkV307s7O7tHyQPj2rKDyVlVeoLXzYcopjgHqsCB8EagWTEdQSrO6ObqV+/Z1Jx36vAOGBtlww83ueUgJa6yUwL2ANEFTLBafscF7GVtwvT0sniC2zZuhRxYX4xO9luMmVmzBnwKrEWJIUWKHeTX62eT0OXeUAFUappmQG0IyKBU8EmiVaoWEDoiAxYU1OPuEy1o9leE3ymlR7u+1IfD/BM/T0REVepsevoTpfAUC17U/E/rxlC/6odcS8IgXl0/lA/FBh8PA0J97hkFMRYE0Il13/FdEgkoaCjTOgQrOWVV0nNzliXmdxdLlW6XsQRRyfoFKWRhfKohG5RGVURRY/oGb2iN+PJeDHejY95a8xYzByjPzA+fwD7+JmD</latexit>

Ta(2) = 1729 = 13 + 123 = 93 + 103

<latexit sha1_base64="aD6AiAYycn+wrtYVMHNco2tsXcI="></latexit>

Ta(3) = 87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143

<latexit sha1_base64="siJjTD/gs5qodIPGk/6VHs8ti+0="></latexit>

Ta(6) = 24153319581254312056344

= 289062063 + 5821623

= 288948033 + 30641733

= 286574873 + 85192813

= 270932083 + 162180683

= 265904523 + 174924963

= 262243663 + 182899223

<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...

(Ramanujan-Hardy)

(1957)

(2003)

For Ta(n ≥ 7) only upper bounds are known.
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GA vs GQAA
Generalised Taxicab numbers

<latexit sha1_base64="e4Mz/5qtpXjqK+cSsePzRUi4d7g="></latexit>

(k,m, n) ⌘ xk
1 + · · ·+ xk

m = yk1 + · · ·+ ykn(k,m,n) numbers are such that  

Unsolved problem in mathematics: (5,2,2) numbers
Does there exist any number that can be expressed as a sum of two positive fifth 
powers in at least two different ways, i.e.,

<latexit sha1_base64="KtoL/UWDyQ3yAtiiW4FksdVI0Fo=">AAAB/nicbZDLSgMxFIbPeK31Niqu3ASLIAhlRlp1IxTduKxgL9BOSyaTaUMzF5KMUIaCr+LGhSJufQ53vo3pdBbaeiDh4//PISe/G3MmlWV9G0vLK6tr64WN4ubW9s6uubfflFEiCG2QiEei7WJJOQtpQzHFaTsWFAcupy13dDv1W49USBaFD2ocUyfAg5D5jGClpb55iHtVdIZcfV8jkrHXq/bNklW2skKLYOdQgrzqffOr60UkCWioCMdSdmwrVk6KhWKE00mxm0gaYzLCA9rRGOKASifN1p+gE614yI+EPqFCmfp7IsWBlOPA1Z0BVkM5703F/7xOovwrJ2VhnCgaktlDfsKRitA0C+QxQYniYw2YCKZ3RWSIBSZKJ1bUIdjzX16E5nnZvihX7iul2k0eRwGO4BhOwYZLqMEd1KEBBFJ4hld4M56MF+Pd+Ji1Lhn5zAH8KePzB5X9kq8=</latexit>

a5 + b5 = c5 + d5 ?

(3,7,7) and (3,8,8) numbers:

We discovered some apparently new 
Taxicab numbers of this kind with a 
different technique.
[Abel, LAN, Fortschritte der Physik, 2022]
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GA vs GQAA
Generalised Taxicab numbers

<latexit sha1_base64="e4Mz/5qtpXjqK+cSsePzRUi4d7g=">AAACK3icbZDLSgMxFIYz9VbrbdSlm2ARKpYyI0XdCKVuXCpYFXoZMmmmDZNkxiQjDqXzPG58FRe68IJb38O0dqHVA4GP/z8nyfn9mFGlHefNys3Mzs0v5BcLS8srq2v2+salihKJSQNHLJLXPlKEUUEammpGrmNJEPcZufLDk5F/dUukopG40GlM2hz1BA0oRtpInl0vhWVeFrswa5GbhN5m8M5zOyHcg61upBU3cOdxI2THGUynrdQTndCzi07FGRf8C+4EimBSZ579ZC7ACSdCY4aUarpOrNsDJDXFjAwLrUSRGOEQ9UjToECcqPZgvOsQ7hilC4NImiM0HKs/JwaIK5Vy33RypPtq2huJ/3nNRAdH7QEVcaKJwN8PBQmDOoKj4GCXSoI1Sw0gLKn5K8R9JBHWJt6CCcGdXvkvXO5X3INK9bxarNUnceTBFtgGJeCCQ1ADp+AMNAAG9+ARvIBX68F6tt6tj+/WnDWZ2QS/yvr8ApsjpOM=</latexit>

(k,m, n) ⌘ xk
1 + · · ·+ xk

m = yk1 + · · ·+ ykn(k,m,n) numbers are such that  

Unsolved problem in mathematics: (5,2,2) numbers
Does there exist any number that can be expressed as a sum of two positive fifth 
powers in at least two different ways, i.e.,

<latexit sha1_base64="KtoL/UWDyQ3yAtiiW4FksdVI0Fo=">AAAB/nicbZDLSgMxFIbPeK31Niqu3ASLIAhlRlp1IxTduKxgL9BOSyaTaUMzF5KMUIaCr+LGhSJufQ53vo3pdBbaeiDh4//PISe/G3MmlWV9G0vLK6tr64WN4ubW9s6uubfflFEiCG2QiEei7WJJOQtpQzHFaTsWFAcupy13dDv1W49USBaFD2ocUyfAg5D5jGClpb55iHtVdIZcfV8jkrHXq/bNklW2skKLYOdQgrzqffOr60UkCWioCMdSdmwrVk6KhWKE00mxm0gaYzLCA9rRGOKASifN1p+gE614yI+EPqFCmfp7IsWBlOPA1Z0BVkM5703F/7xOovwrJ2VhnCgaktlDfsKRitA0C+QxQYniYw2YCKZ3RWSIBSZKJ1bUIdjzX16E5nnZvihX7iul2k0eRwGO4BhOwYZLqMEd1KEBBFJ4hld4M56MF+Pd+Ji1Lhn5zAH8KePzB5X9kq8=</latexit>

a5 + b5 = c5 + d5 ?

(3,7,7) and (3,8,8) numbers:

We discovered some apparently new 
Taxicab numbers of this kind with a 
different technique.
[Abel, LAN, Fortschritte der Physik, 2022]

We shall focus on the same problem using GQA.
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Results on (3,6,6), (3,7,7) and (3,8,8) numbers

[Abel, LAN, Spannowsky, 2022]

GA vs GQAA

~ one order of magnitude difference in the the fitness of the fittest individual after 100 generation
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Conclusions and Outlook

❖ We developed an hybrid technique using genetic algorithms and quantum 
annealing

❖ We find the algorithm to be significantly more powerful on several simple 
problem than a classical GA

❖ Apply this technique to physical problems (e.g. string theory landscape,…)
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Thanks for your attention


