

Chen Chen

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Exotic Hardon Spectroscopy 2023

20 Apr. 2023, Durham

Exotic hadrons at LHC

Exotic hadrons at LHC

I'd like to cover all the 14 states, which this talk is too short to contain

3

Exotic hadrons at LHC

LHCb results in this talk

Observations of new decays

- $B^+ \to J/\psi \eta' K^+$ [arXiv:2303.09443]
- $B_s^0 \rightarrow \chi_{c1}(3872)\pi^+\pi^- [arXiv:2302.10629]$

LHCb experiment

Dedicated for precise and efficient heavy-hadron reconstruction
 Single-arm and forward design

 $2 < \eta < 5$ range: ~25% $b\overline{b}$ pairs in LHCb acceptance

- Powerful particle identification
 - $\epsilon(K \to K) \sim 95\%$ with $\epsilon(\pi \to K) \sim 5\%$
 - $\epsilon(\mu \rightarrow \mu) \sim 97\%$ with $\epsilon(\pi \rightarrow \mu) \sim 1 3\%$
- High momentum resolution
 - $\Delta p/p = 0.4 \sim 0.6\% (5 100 \text{GeV}/c)$
 - $\sigma_{m_B} \sim 10 \text{MeV} \text{ for } B \rightarrow D\overline{D}K$

High spatial resolution

• $\sigma_{\text{IP}} \sim 20 \mu\text{m}; \sigma_{\text{PV},x/y} \sim 10 \mu\text{m}; \sigma_{\text{PV},z} \sim 60 \mu\text{m}$

LHCb dataset

- Run1: 3 fb⁻¹ *pp* collision @ 7, 8 TeV
- Run2: 6 fb⁻¹ pp collision @ 13 TeV
- Run3: started in 2022

All analyses in this talk used the Run1 + Run2 dataset

Observation of pentaquark $P^{\Lambda}_{\psi s}(4338)$ in $B^- \rightarrow J/\psi \Lambda \bar{p}$ arXiv:2210.10346

arXiv:2210.10346

 $B^- \rightarrow J/\psi \wedge \overline{p}$ dataset

• $J/\psi \rightarrow \mu^+\mu^-, \Lambda \rightarrow p\pi^-$

Observation of $P_{\psi s}^{\Lambda}(4338)^0$

• $P_{\psi s}^{\Lambda}(4338)^{0}$: > 10σ • $M_{0} = 4338.2 \pm 0.7 \pm 0.4$ MeV • $\Gamma_{0} = 7.0 \pm 1.2 \pm 1.3$ MeV • $J = \frac{1}{2}$ • P = -1 is favored (+1 excluded at 90% CL)

- Interesting facts:
 - Mass close to \(\mathbf{E}_c^+D^-\) threshold and in S-wave
 - Mass similar to $P_{\psi}^{N}(4337)$
 - Same pattern as $P_{\psi s}^{\Lambda}(4459)$ & $P_{\psi}^{N}(4457)$

Can fit in SU(3) flavor multiplets or are more likely a molecular state?

Evidence of tetraquark $T^{\theta}_{\psi s1}(4000)^{0}$ in $B^{0} \rightarrow J/\psi K^{0}_{S}\phi$ arXiv:2301.04899

Isospin extention of $B^+ \rightarrow J/\psi K^+ \phi$ analysis where $c\bar{c}u\bar{s}$ tetraquarks $T^{\theta}_{\psi s1}(4000)^+$ and $T_{\psi s1}(4220)^+$ were observed

Phys. Rev. Lett. 127 (2021) 082001

arXiv:2301.04899

$B^0 \rightarrow J/\psi K_S^0 \phi$ dataset

• $J/\psi \rightarrow \mu^+\mu^-$; $\phi \rightarrow K^+K^-$; $K^0_S \rightarrow \pi^+\pi^-$

 B^+

Amplitude analysis

- $B^0 \rightarrow I/\psi K_S^0 \phi \& B^+ \rightarrow I/\psi K^+ \phi$ connected by isospin symmetry
- Combined fit to B⁺ & B⁰ decays
 - All components except $T_{\psi s_1}^{\theta}(4000)^0$ in B^0 decay are constrained by those in *B*⁺ decay

 $M(T_{\psi s1}^{\theta}(4000)^{0}) = 3991 \stackrel{+12}{_{-10}} \stackrel{+9}{_{-17}} \text{MeV}$ $\Gamma(T^{\theta}_{\psi s1}(4000)^0) = 105^{+29}_{-25}^{+17}_{-23} \text{MeV}$

Significance: 4σ

(would be 5.4σ if assuming isospin symmetry for $T_{\psi s1}^{\theta}(4000)^0$)

Observation of tetraquarks $T^{a}_{c\bar{s}0}(2900)^{++/0}$ in $B \rightarrow \overline{D}D^{+}_{s}\pi^{+/-}$

arXiv:2212.02717 arXiv:2212.02716

• Clear vertical band at $M^2(\overline{D}\pi) \sim 6 \text{ GeV}^2$: $D_2^*(2460)$

• Faint horizonal band at $M^2(D_s\pi) \sim 8.5 \text{ GeV}^2$: new tetraquark candidates

Isospin symmetry -> combined amplitude analysis to the two channels

• $T^a_{c\bar{s}0}(2900)^{++/0}$: > 9 σ ; $J^P = 0^+$ $M = 2.908 \pm 0.011 \pm 0.020 \,\text{GeV}$

 $\Gamma = 0.136 \pm 0.023 \pm 0.011 \, \text{GeV}$

Discussions on $T^{a}_{c\bar{s}0}(2900)^{++/0}$

- $T^{a}_{c\bar{s}0}(2900)^{++} \& T^{a}_{c\bar{s}0}(2900)^{0}$ in isospin triplet
 - Where is $T^a_{c\bar{s}0}(2900)^+$? -> be searched for in $D^+_s \pi^0$

 $T_{cs0}(2900) \equiv X_0(2900)$

- $T^a_{c\bar{s}0}(2900) \& T_{cs0}(2900)$ have similar masses
 - Are they SU(3) flavor partners?
 - Where are other states in the SU(3) multiplets?

Remain to be revealed in future studies

A near-threshold $D_s^+ D_s^-$ structure in $B^+ \rightarrow D_s^+ D_s^- K^+$

arXiv:2210.15153 arXiv:2211.05034

 $\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) = (1.15 \pm 0.07 \pm 0.06 \pm 0.38) \times 10^{-4}$

Observation of X(3960) in $D_s^+D_s^-$

- Two new states with $J^{PC} = 0^{++}$:
 - X(3960) : to describe the near-threshold peak > 12σ
 - $X_0(4140)$: to account for the dip at ~4.14 GeV via interference > 3σ

arXiv:2210.15153

arXiv:2211.05034

RBW mass lineshape for all resonances

X(3960) vs $\chi_{c0}(3930)$

arXiv:2210.15153 arXiv:2211.05034

- X(3960): $M_0 = 3955 \pm 6 \pm 11 \text{ MeV}$; $\Gamma_0 = 48 \pm 17 \pm 10 \text{ MeV}$; $J^{PC} = 0^{++}$
- $\chi_{c0}(3930): M_0 = 3924 \pm 2 \text{ MeV};$ $\Gamma_0 = 17 \pm 5 \text{ MeV};$ $J^{PC} = 0^{++}$

Phys.Rev.D102(2020) 112003, Phys. Rev. Lett. 125 (2020) 242001

• Are they the same particle? If yes

 $\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \mathcal{F} \mathcal{F}_{B^+ \to D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \mathcal{F} \mathcal{F}_{B^+ \to D_s^+ D_s^- K^+}^X} \qquad \begin{array}{l} \mathcal{F} \mathcal{F}: \text{ Fit fractions in the two } B^+ \text{ decays} \\ \text{the two } B^+ \text{ decays} \end{array}$ $= 0.29 \pm 0.09 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.08 \text{ (ext)}$

- $\Gamma(X \to D^+D^-) < \Gamma(X \to D_s^+D_s^-) \rightarrow \text{exotic}$
 - Conventional charmonium predominantly decays into $D^{(*)}\overline{D}^{(*)}$
 - It is harder to excite an $s\bar{s}$ pair from vacuum compared with $u\bar{u}(d\bar{d})$

 $T_{\psi\phi0}^{f}(39xx)$

• What can we do in the future?

- Precision measurements of $X(3960)/\chi_{c0}(3930)$ properties -> to see if they are really the same particle

- $X(3960)/\chi_{c0}(3930)/\chi_{c0}(3915) \rightarrow J/\psi\omega$ -> more input to help reveal the nature of this state

- **E.g.** $B \rightarrow J/\psi \omega K$

Look again at $X_0(4140)$

arXiv:2210.15153 arXiv:2211.05034

Background subtracted

The default model: dip@4.14GeV modelled by a new resonance, $X_0(4140)$ Can also be described by considering $J/\psi\phi \rightarrow D_s^+D_s^$ rescattering in the *K*-matrix formula

No definitive conclusion on existence of $X_0(4140)$

Opportunity to investigate exotic resonances in $J/\psi\eta'$ and $J/\psi K^+$ systems

arXiv:2303.09443

Observation of $B^+ \rightarrow J/\psi \eta' K^+$

 $B^+ \to J/\psi \eta' K^+, \ J/\psi \to \mu^+ \mu^- \\ \eta' \to \rho^0 (\to \pi^+ \pi^-) \gamma \\ \eta' \to \eta (\to 2\gamma) \pi^+ \pi^-$

 $\mathcal{B}(B^+ \to J/\psi \eta' K^+) = (3.06 \pm 0.29 \pm 0.18 \pm 0.04) \times 10^{-5}$

arXiv:2303.09443

Investigation of phase space

Background subtracted

No hint of exotic in $m(J/\psi \eta')$ or $m(J/\psi K^+)$

But let's wait for more data !!

Observation of $B_s^0 \rightarrow \chi_{c1}(3872)\pi^+\pi^-$

arXiv:2302.10629

Probing $\chi_{c1}(3872)$ nature via production

 The above two phenomena could be explained by a compact-tetraquark interpretation
 Phys. Rev. D102 (2020) 034017

Let's investigate more *B*-hadron decays!

$B_s^0 \to \chi_{c1}(3872)(\to J/\psi\pi^+\pi^-)\pi^+\pi^-)$

 Signal yield determined from 2D mass fit

 $\frac{\mathcal{B}(B_s^0 \to \chi_{c1}(3872)\pi^+\pi^-) \times \mathcal{B}(\chi_{c1}(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B_s^0 \to \psi(2S)\pi^+\pi^-) \times \mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (6.8 \pm 1.1 \pm 0.2) \times 10^{-2}$ Three times of the ratio: $\mathcal{R}_{\psi(2S)\phi}^{\chi_{c1}(3872)\phi} = (2.42 \pm 0.23 \pm 0.07) \times 10^{-2}$

28

JHEP 02 (2021) 024

arXiv:2302.10629

The recoiled $\pi^+\pi^-$ mass

Background subtracted

• Observation of $B_s^0 \to \chi_{c1}(3872) f_0(980)$: > 7σ

Amplitude measurement urges for more data !!

Summary and prospects

- Recent exotic candidates at LHCb
- Observations of new *B* decays show potential for future exotic studies
 - $B^+ \rightarrow J/\psi \eta' K^+$
 - $B_s^0 \to \chi_{c1}(3872) \pi^+ \pi^-$
- More LHCb data will provide new opportunities

New exotic naming scheme

arXiv:2206.15233

- *T* for tetraquark
- **P** for pentaquark
- **superscript**: based on existing symbols, to indicate isospin, parity and G-parity
- **subscript**: heavy quark content

T states			T states				
zero net S, C, B			non-zero net S, C, B				
(P,G)	I = 0	I = 1	(1	P)	I = 0	$I = \frac{1}{2}$	I = 1
(-, -)	ω	π	(-	-)	η	au	π
(-, +)	η	ρ	(-	+)	f	θ	a
(+, +)	f	b					
(+, -)	h	a					

P states

I = 0	$I = \frac{1}{2}$	I = 1	$I = \frac{3}{2}$
Λ	N^{-}	Σ	$\Delta^{}$

Minimal quark content	Current name	$I^{(G)},\ J^{P(C)}$	Proposed name	Reference
$c\bar{c}$	$\chi_{c1}(3872)$	$I^G = 0^+, \ J^{PC} = 1^{++}$	$\chi_{c1}(3872)$	[24, 25]
$car{c}uar{d}$	$Z_c(3900)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(3900)^+$	[26-28]
$car{c}uar{d}$	$X(4100)^+$	$I^{G} = 1^{-}$	$T_{\psi}(4100)^+$	[29]
$car{c}uar{d}$	$Z_c(4430)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(4430)^+$	[30, 31]
$car{c}(sar{s})$	$\chi_{c1}(4140)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(4140)$	[32 - 35]
$car{c}uar{s}$	$Z_{cs}(4000)^+$	$I=rac{1}{2},\ J^P=1^+$	$T^{ heta}_{\psi s1}(4000)^+$	[7]
$car{c}uar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, \ J^P = 1^?$	$T_{\psi s1}(4220)^+$	[7]
$c\bar{c}c\bar{c}$	X(6900)	$I^G = 0^+, \ J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$	[4]
$csar{u}ar{d}$	$X_0(2900)$	$J^P = 0^+$	$T_{cs0}(2900)^0$	[5,6]
$csar{u}ar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$	[5, 6]
$ccar{u}ar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$	[8, 9]
$bar{b}uar{d}$	$Z_b(10610)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\Upsilon 1}(10610)^+$	[36]
$car{c}uud$	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$	[3]
$c\bar{c}uds$	$P_{cs}(4459)^0$	$I = \overline{0}$	$P_{\psi s}^{\Lambda}(4459)^{0}$	[20]

Story of $B^+ \to D^+ D^- K^+$

Phys.Rev.D102(2020) 112003 Phys. Rev. Lett. 125 (2020) 242001

Searched for in $B \rightarrow \overline{D}D_s\pi$

 $T_{cs0,1}(2900) \rightarrow D^-K^+$: first $cs\bar{u}\bar{d}$ tetraquarks arXiv:2204.02649

Some models predict its SU(3) flavour partners, e.g. $T_{c\bar{s}} \rightarrow D_s \pi$?

 $\chi_{c0}(3930) \to D^+D^-$:

- It is suggested to be the same particle as $\chi_{c0}(3915) \rightarrow J/\psi\omega$ PDG 2020
- Some theories suggest that it is a ccss tetraquark candidate

<u>JHEP 06 (2021) 035</u> <u>Sci. Bull., 2021, 66: 1413</u> Search for $\chi_{c0}(3930) \rightarrow D_s^+ D_s^-$ in $B^+ \rightarrow D_s^+ D_s^- K^+$

 $T^a_{c\bar{s}0}(2900)$ Argand plot

arXiv:2212.02717 arXiv:2212.02716

Spline and BW models both go anticlockwise $\xrightarrow{}$

Support the resonant nature of $T^{a}_{c\bar{s}0}(2900)$

Other projections

arXiv:2212.02717 arXiv:2212.02716

Other projections

 $m(\overline{D}\pi) > 2.7 \text{ GeV}$

$B^+ \rightarrow D_s^+ D_s^- K^+$ fit results

• \mathcal{F} : fit fraction

• *S* : significance

(numbers in brackets don not include systematic effect)

Component	J^{PC}	$M_0~({ m MeV})$	$\Gamma_0 ~({ m MeV})$	${\cal F}~(\%)$	$\mathcal{S}(\sigma)$
X(3960)	0^{++}	$3956\pm5\pm10$	$43\pm13\pm8$	$25.4\pm7.7\pm5.0$	12.6 (14.6)
$X_0(4140)$	0^{++}	$4133\pm 6\pm 6$	$67\pm17\pm7$	$16.7\pm4.7\pm3.9$	3.8~(4.1)
$\psi(4260)$	1	4230	55	$3.6\pm0.4\pm3.2$	3.2 (3.6)
$\psi(4660)$	1	4633	64	$2.2\pm0.2\pm0.8$	3.0(3.2)
NR	0^{++}	-	-	$46.1 \pm 13.2 \pm 11.3$	3.1(3.4)

• Fixed parameters taken from PDG 2018/2020 $(\psi(4260) \text{ is } \psi(4230) \text{ in PDG2022})$

- Spin-parity tests:
 - X(3960): 0⁺⁺ favored; 1⁻⁻ and 2⁺⁺ rejected by at least 9σ
 - $X_0(4140)$: 0⁺⁺ favored; 1⁻⁻ and 2⁺⁺ rejected by at least 3.5 σ

K-matrix model for X(3960)

arXiv:2210.15153 arXiv:2211.05034

$$\begin{pmatrix} \mathcal{M}_{D_s^+ D_s^- \to D_s^+ D_s^-} & \mathcal{M}_{D_s^+ D_s^- \to J/\psi\phi} \\ \mathcal{M}_{J/\psi\phi \to D_s^+ D_s^-} & \mathcal{M}_{J/\psi\phi \to J/\psi\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{pmatrix} \qquad \qquad \mathcal{K}_{ab}(m) = \sum_R \frac{g_b^R g_a^R}{M_R^2 - m^2} + f_{ab}$$

$$\mathcal{P}_b(m) = \sum_R rac{eta_R g_b^R}{M_R^2 - m^2} + eta_b$$

$$\mathcal{M}_a = \sum_b (I - i\rho \mathcal{K})^{-1}_{ab} \mathcal{P}_b$$

Contribution	J^{PC}	$M_R ~({ m MeV})$	$g_1^R \; ({ m MeV})$	Γ_{ψ} (MeV)	${\cal F}~(\%)$
$ \mathcal{M}_1 ^2$	0^{++}	3957 ± 14	1350 ± 344		94.7 ± 0.4
$\psi(4260)$	1	4230 [59]		55 [59]	3.2 ± 0.5
$\psi(4660)$	1	4633 [31]		64 [31]	2.1 ± 0.2
β_R		(1,0i)	eta_1	(-1.2, 2.5i)	$\pm (4.5, 3.1i)$
eta_2	(-137.	$(2, -1.5i) \pm (2.7, 218.6i)$	f_{11}	0.8 =	± 1.2
$f_{12} = f_{21}$		0.1 ± 0.1	f_{22}	8.0 =	± 5.1

Large uncertainties. Larger data sample is needed

 $\frac{\mathcal{B}(B^+ \to J/\psi \eta' K^+)}{\mathcal{B}(B^+ \to \psi(2S)K^+)} = (4.91 \pm 0.47 \pm 0.29 \pm 0.07) \times 10^{-2}$

Source	Value $[\%]$
B^+ kinematics	0.1
B^+ decay model	1.1
Tracking efficiency correction	0.7
Photon reconstruction correction	3.6
Kaon identification	2.8
Trigger efficiency	1.1
Data-simulation agreement	3.0
Fit model	1.6
Simulation sample size	0.9

