Light hadron spectroscopy at BESIII

Yingchun Zhu (on behalf of BESIII Collaboration)

University of Science and Technology of China

Exotic Hadron Spectroscopy 2023, Durham UK, April 19-21

OUTLINE

Introduction on BESIII@BPCII

Light hadrons

Selected results at BESIII

Summary

BESIII @ Beijing Electron Positron Collider (BEPC) – charm facility

Center of mass energy : 2.0 – 4.95 GeV Reached highest Ecm=4.95GeV in Jan. 2021

BESIII

detector

Optimized for τ-charm Physics

Linear part

2004: started BEPCII upgrade, BESIII construction 2009 - now: BESIII physics run

1989-2004 (BEPC): L_{peak}=1.0x10³¹ cm⁻²s⁻¹

2009-now (BEPCII): L_{peak}= 1.0 x10³³ cm⁻²s⁻¹ Reached peak lumi. In April 2016

BESIII at BEPCII

• EMC: Csl crystals $\Delta E/E=2.5\%@1GeV$ -barrel $\Delta E/E=5.0\%@1GeV$ -endcaps_{SC}

• TOF $\sigma_T = 68 \text{ ps for barrel}$ $\sigma_T = 110(60) \text{ ps for endcap}$

- MDC: spatial reso. 115μm σ_p/p=0.5%@1GeV dE/dx reso.=6%
- RPC:8 RPC: 9 **Electro Magnetic** lavers layers Calorimeter Solenoid~ cos0=0.83 Barrel $\cos\theta =$ ToF Endcap, $\cos\theta = 0$ ToF SC -MDC Quadrupole
- Magnet: 1T super conducting
- Muon ID: 9 layer RPC
- Trigger: Tracks & showers

Total weight 730ton, ~40,000 readout channels Data rate: 5kHz, 50Mb/s

Has been in full operation since 2008, all subdetectors are in very good status!

Rich Physics at τ**-charm Energy Region**

world's largest data samples directly collected , ~40fb⁻¹ data in E_{cm} = 2~4.95GeV

light hadrons

Establish the spectrum and study the exotic hadrons properties

Conventional hadron in quark model

QCD allows for hadrons beyond quark model

Searches for glueballs and new exotics

Charmonium decays provide an ideal laboratory for light hadron studies (clean, high statistics and gluon-rich environment)

 $\Gamma(J/\psi \rightarrow \gamma G) \sim o(\alpha \alpha_s^2), \ \Gamma(J/\psi \rightarrow \gamma H) \sim o(\alpha \alpha_s^3), \ \Gamma(J/\psi \rightarrow \gamma M) \sim o(\alpha \alpha_s^4), \ \Gamma(J/\psi \rightarrow \gamma F) \sim o(\alpha \alpha_s^4)$

• Glueball searches

--Evidence of gluon self interaction--Provide critical information on the gluon field--quantitative understanding of confinement

Searches for glueballs and new exotics

- Charmonium decays provide an ideal laboratory for light hadron studies (clean, high statistics and gluon-rich environment)
 - Exotic hybrids
 - --J^{PC} = 0^{+-,} 1⁻⁺, 2⁺⁻ (forbidden in the conventional QCD)
 - -- 1⁻⁺ nonet of hybrid mesons is predicted to be the lightest (1.8-2.1GeV mass region)
 - -- Only isovector candidate observed $\pi_1(1400), \pi_1(1600), \pi_1(2015)$

Finding an isoscalar 1⁻⁺ hybrid state is critical to establish the hybrid multiplet.

LQCD prediction for Exotic Hybrids

Pseudoscalar glueball searches: n(1405/1475)

A structure was first observed by MARKIII.

- One or two pseudoscalar mesons exist in ~1.4GeV?
 - $\eta(1405) \rightarrow a_0 \pi$ $\eta(1475) \rightarrow K^* \overline{K}$ Long puzzle!
- ➤ Where is the 0⁻⁺ glueball?
 - LQCD: 0⁻⁺(2.3~2.6 GeV); Nature of $\eta(1405)$?

➢ Isospin-violating decay η(1405)→f₀(980)π⁰ observed for the first time. stat. significance >10σ

Anomalously large isospin violation:

 $\frac{Br(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\eta(1405) \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0)} = (17.9 \pm 4.2)\%$

 $\frac{Br(\chi_{cJ} \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\chi_{cJ} \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0)} < 1\% (90\% CL)$ PRD83 (2011) 032003

τ η**(1405/1475)** - J/ψ hadronic decays

Pseudoscalar glueball searches: n(1405/1475)

Pseudoscalar glueball searches: n(1405/1475)

200

-0.5

cos0.

0.5

Resonance	m_R (MeV/ c^2)	Γ (MeV)	<i>B</i> (10 ⁻⁶)
$\eta(1475) X(1835)$	$\begin{array}{c} 1477\pm7\pm13\\ 1839\pm26\pm26\end{array}$	$\begin{array}{c} 118 \pm 22 \pm 17 \\ 175 \pm 57 \pm 25 \end{array}$	$\begin{array}{c} 10.36 \pm 1.51 \pm 1.54 \\ 8.09 \pm 1.99 \pm 1.36 \end{array}$

 $J/\psi \rightarrow \gamma \gamma \phi$

> Observed in $J/\psi \rightarrow \gamma\gamma\phi$ using 1.3B J/ψ events

Favor 0⁻⁺

> Contain a sizeble $s\overline{s}$ component

Not match to the expectation for 0⁻⁺ glueball!

 $\begin{array}{l} \searrow \quad \frac{\Gamma(\eta(1475) \rightarrow \gamma \rho)}{\Gamma(\eta(1475) \rightarrow \gamma \phi)} = (11.1 \pm 3.5):1 \\ \text{Larger than the theory prediction 3.8:1} \end{array}$

PWA of $J/\psi \rightarrow \gamma \gamma \phi$ ongoing using 10B J/ ψ events

 $\succ \text{Two pseudoscalar states needed, both decay into } (K_s^0 K_s^0)_{s-wave} \pi^0$ and $(K_s^0 \pi^0)_{p-wave} K_s^0$ Resonance $M(\text{MeV}/c^2)$ $\Gamma(\text{MeV})$

Resonance	$M({ m MeV}/c^2)$	$\Gamma(MeV)$
$\eta(1405)$	$1391.7\pm0.7^{+11.3}_{-0.3}$	$60.8 \pm 1.2^{+5.5}_{-12.0}$
$\eta(1475)$	$1507.6 \pm 1.6^{+15.5}_{-32.2}$	$115.8 \pm 2.4^{+14.8}_{-10.9}$

 \succ f₁(1285), f₁(1420) and f₂(1525) observed for the first time in this process

Pseudoscalar glueball searches: X(2370)?

Two structures first observed in $\eta' \pi \pi$ using 225M J/ ψ events, confirmed by analysis using 10B J/ ψ events

- $\succ K\overline{K}\eta'$:
 - X(2370) observed with signif. 8.6σ;
 - no evidence signal for X(2120)

X(2370) could be 0⁻⁺ glueball candidate

New results about $f_0(1500)$ and $f_0(1710)$

Resonance	m (meric)	1 (110)	mpbg (metre)	PDG (me v)	D.1. (~10)	oig.
$f_0(1500)$	1506	112	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$f_0(2330)$	$2312{\pm}7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
$\eta_1(1855)$	$1855{\pm}9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-		$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ

Tensors glueball candidate $f_2(2340)$

LQCD prediction:

 $egin{aligned} &\Gamma(J/\psi o \gamma G_{2^+}) = 1.01(22) keV \ &\Gamma(J/\psi o \gamma G_{2^+})/\Gamma_{tot} = 1.1 imes 10^{-2} \end{aligned}$

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

PWA of
$$J/\psi \rightarrow \gamma \varphi \varphi$$
 ,1.3B J/ ψ

Experimental results:

Br(J/
$$\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \eta \eta$$
) = (3.8^{+0.62+2.37}_{-0.65-2.07})×10⁻⁵
Phys.Rev. D87, 092009 (2013)

Br(J/ ψ → γ f₂(2340) → γ φφ) = (1.91±0.14^{+0.72}_{-0.73})×10⁻⁴ Phys.Rev. D93, 112011 (2016)

 $Br(J/\psi \rightarrow \gamma f_{2}(2340) \rightarrow \gamma K_{S}K_{S}) = (5.54^{+0.34^{+3.82}}_{-0.40^{-1.49}}) \times 10^{-5}$ Phys.Rev. D98, 072003 (2018)

• f₂(2010), f₂(2300) and f₂(2340) observed

-f₂(2340) be a tensor glueball candidate -Searches for additional decay modes are necessary.

Salars and Tensors in $J/\psi \to \gamma \eta' \eta'$

- Dominant contributions are from the f₀(2020), f₀(2330), f₂(2340)
- F₀(2020), the same as f₀(2100) in
 J/ψ →γηη and f₀(2200) in J/ψ→γKsKsπ⁰

A large overlap with 0⁺⁺ glueball; Mass lower than the 1st excitation of 0⁺⁺ glueball

f₂(2340) observed in η'η' mode for the first time, Stat. significance 16.1σ

new scalar T ₀ (2480)		new so	calar	f ₀ (2	480)
----------------------------------	--	--------	-------	-------------------	------

Resonance	$M(MeV/c^2)$	$\Gamma(MeV)$	B.F.
$f_0(2020)$	$1982 \pm 3^{+54}_{-0}$	$436 \pm 4^{+46}_{-49}$	$(2.63 \pm 0.06^{+0.31}_{-0.46}) \times 10^{-4}$
$f_0(2330)$	$2312 \pm 2^{+10}_{-0}$	$134 \pm 5_{-9}^{+30}$	$(6.09 \pm 0.64^{+4.00}_{-1.68}) \times 10^{-6}$
$f_0(2480)$	$2470\pm4^{+4}_{-6}$	$75\pm9^{+11}_{-8}$	$(8.18 \pm 1.77^{+3.73}_{-2.23}) imes 10^{-7}$
$h_1(1415)$	$1384 \pm 6^{+9}_{-0}$	$66 \pm 10^{+12}_{-10}$	$(4.69 \pm 0.80^{+0.74}_{-1.82}) \times 10^{-7}$
$f_2(2340)$	$2346\pm8^{+22}_{-6}$	$332\pm14^{+26}_{-12}$	$(8.67 \pm 0.70^{+0.61}_{-1.67}) \times 10^{-6}$
0 ⁺⁺ PHSP	• • •		$(1.17 \pm 0.23^{+4.09}_{-0.70}) \times 10^{-5}$

A new exotic X(2600) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

Exotic X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

58M J/ ψ events (BESII)

- First observed exotic X(1835)
 - significance 7.7 σ ,
 - M=1833.7±6.1±2.7 MeV/c²
 Γ=67.7±20.3±7.7 MeV/c²
- prime candidate for the source of $p\bar{p}$ mass threshold in J/ $\psi \rightarrow \gamma p\bar{p}$

225M J/ ψ events (BESIII)

- X(1835) confirmed
 - significance >20 σ
 - M = $1836.5 \pm 3.0^{+5.6}_{-2.1}$ MeV/c² $\Gamma = 190 \pm 9^{+38}_{-36}$ MeV/c²
 - angular distribution consists with 0⁻

Exotic X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- \succ a significant distoration near $P\overline{P}$ mass threshold
- two models used to describe the anomalous line shape :
 flatte formula or the coherent sum of two resonant amplitudes.
 Both support the existence of a pp̄ molecule-like state or bound state

Exotic X(1835) in $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta$ and $\gamma \gamma \phi$

Observed in KsKsη invariant mass spectrum
J^{PC} =0⁻⁺ determined by performing PWA, using 1.3B J/ψ events

Observed in γφ invariant mass spectrum
J^{PC} =0⁻⁺ favored by performing angle distribution fit, using 1.3B J/ψ events
Contains a sizeable ss̄ component!

Observation of $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta'$

> Isoscalar state $\eta_1(1855)$ with exotic quantum numbers J^{PC} = 1⁻⁺ a stat. significance >19 σ

Mass is consistent with LQCD calculation for the 1⁻⁺ hybrid (1.7–2.1GeV) $M = (1855 \pm 9^{+6}_{-1})MeV$ $\Gamma = (188 \pm 18^{+3}_{-8})MeV$ $\mathcal{B}(J/\psi \rightarrow \gamma\eta_1(1855) \rightarrow \gamma\eta\eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$

Critical to establish the 1⁻⁺ hybrid nonet !

Light hadrons in open-charm decays

Light hadrons in open-charm decays

-- the mass is ~100MeV greater than the predicted value for $a_0(1710)$ -- $a_0(1817)$ could be the isovector partner of the X(1812)

> A more sophisticated study of this a₀-like state is necessary

Summary

Rich physics in light hadrons

Charmonium data provides a unique opportunity to map the light hadron spectroscopy and search for glueball and exotic states

- η(1405)/η(1475) puzzle:
 - a sizeble ss component
 - not match to the expectation for 0⁻⁺ glueball
 - two separated states in $J/\psi \rightarrow \gamma K_s^0 K_s^0 \pi^0$
- X(1835),X(2120),X(2370) and X(2600) observed in J/ $\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - 0⁻⁺ glueball candidate X(2370)
- $f_2(2340)$ observed in $\eta'\eta'$ mode for the first time in $J/\psi \rightarrow \gamma \eta' \eta'$
 - a tensor glueball candidate

Summary

- first observation of exotic 1⁻⁺ state $\eta_1(1855)$ in J/ $\psi \rightarrow \gamma \eta \eta'$
- new results on $f_0(1500)$ and $f_0(1710)$ in $J/\psi{\rightarrow}\,\gamma\eta\eta'$
 - f₀(1710) has a large overlap with the ground state scalar glueball
- Light hadrons a₀(1710) and a₀(1817) observed in open-charm decays
- More surprise at BESIII are expected

I am sorry for not being able to cover all the important results.

Thanks for your attention!

J ^{PC}	0++	0+-	0-+	0	1++	1+-	1-+	1	2++	2+-	2-+	2	3++	3+-	3-+	3
$q\overline{q}$	1	х	1	x	1	1	x	1	1	х	1	1	1	1	x	1
$q\overline{q}q\overline{q}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
qqg	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
gg	1	х	1	x	1	x	1	x	1	x	1	x	1	х	1	x

$J/\psi \rightarrow \gamma \gamma \rho$ (BESII)

Phys.Lett.B 594 (2004) 47-53

	1.1		1.80	in a second	in monthly in	
J	$ \psi \rightarrow$	γX	(X	$\rightarrow \gamma \rho$	resu.	lts

$\frac{\rm Mass}{({\rm MeV/c^2})}$	${ m Width} \ ({ m MeV}/c^2)$	$\begin{array}{c} {\rm B}(J/\psi\to\gamma X\to\gamma\gamma\rho)\\ (\times10^{-4}) \end{array}$	Events	Signi- ficanc
$1276.1 \pm 8.1 \pm 8.0$	$40.0\pm8.6\pm9.3$	$0.38 \pm 0.09 \pm 0.06$	203 ± 49	6.3σ
$1424\pm10\pm11$	$101.0 \pm 8.8 \pm 8.8$	$1.07 \pm 0.17 \pm 0.11$	547 ± 86	9.3σ

Comparison with other experiments

Decay Mode	$ m Mass$ $ m (MeV/c^2)$	$\begin{array}{c} {\rm Width} \\ {\rm (MeV/c^2)} \end{array}$	$\begin{array}{c} B(J/\psi\to\gamma X)*\\ \\ B(X\to\gamma V)\\ (\times 10^{-4}) \end{array}$	Experi- ment
$f_1(1285)$ $\rightarrow \gamma \rho^0$	$\begin{array}{c} 1281.9\pm 0.6\\ 1271\pm7\\ 1276.1\pm 8.1\pm 8.0 \end{array}$	$\begin{array}{c} 24.0 \pm 1.2 \\ 31 \pm 14 \\ 40.0 \pm 8.6 \pm 9.3 \end{array}$	$\begin{array}{c} 0.34 \pm 0.09 \\ 0.25 \pm 0.07 \pm 0.03 \\ 0.38 \pm 0.09 \pm 0.06 \end{array}$	PDG [1] MarkIII [7] BESII
$\eta(1440)$ $\rightarrow \gamma \rho^0$	$\begin{array}{c} 1400\text{-}1470 \\ \\ 1432 \pm 8 \\ \\ 1424 \pm 10 \pm 11 \end{array}$	50-80 90 ± 26 $101.0 \pm 8.8 \pm 8.8$	$\begin{array}{c} 0.64 \pm 0.12 \pm 0.07 \\ 0.64 \pm 0.12 \pm 0.07 \\ 1.07 \pm 0.17 \pm 0.11 \end{array}$	PDG [1] MarkIII [7] BESII
$\eta(1440)$ $\rightarrow \gamma \phi$			< 0.82 (95% C.L)	BESII

Pseudoscalar states above 2GeV

Aside from $\eta(2225)$, the structure in pseudoscalar sector above 2GeV are poorly understood.

1.3B J/ψ, PRD93 (2016) 112011

Dominant contribution from 0⁻⁺: η(2225), η(2100) and X(2500)
 Three 2⁺⁺: f₂(2010), f₂(2300) and f₂(2340)

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p \bar{p}$ mass threshold

Landscape of light glueball has updated

Discussions about $f_0(1500) \& f_0(1710)$ $J/\psi \rightarrow \gamma \eta \eta'$

• Significant f₀(1500)

 $\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$

consistent with PDG

• Absence of $f_0(1710)$

 $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @90\% \text{ C. L.}$

- Supports to the hypothesis that f₀(1710) overlaps with the ground state scalar glueball
 - Scalar glueball expected to be suppressed $B(G \rightarrow \eta \eta')/B(G \rightarrow \pi \pi) < 0.04$

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{PDG}~(MeV)$	B.F. (×10 ⁻⁵)	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1 <i>σ</i>
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312 \pm 7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4 <i>σ</i>
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7 <i>σ</i>
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01{}^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

Prospects for 1⁻⁺ hybrids

• Together with $\pi_1(1600)$

Opens a new direction to completing the picture of the hybrid multiplets

- ◆ LQCD: B(J/ψ→γη₁(hybrid)~O(10⁻⁵) [2207.04694] ηη' is not a dominate mode → Search for more
- Interpretations: Hybrid/KK₁Molecule/Tetraquark?

Isoscalar: $\eta_1(1855)$

- ♦ Decay properties
 J/ψ→γηf₁, K₁Kbar,
- Production properties
 J/ψ → ωηη', φηη',
- Where is $\eta_1^{(\prime)}$ and other partners?

- **Isovector:** $\pi_1(1600)$ • $J/\psi \rightarrow \rho \eta' \pi$,
 - $\chi_{c1} \rightarrow \pi \pi b_1, \pi \pi f_1, \pi \pi \eta'$
 - LQCD predicted major decay modes: πb_1 , πf_1

- Analogs in the heavy sector ?
- Data with unprecedented statistical accuracy from BESIII provides great opportunities to study QCD exotics. Will continue to run until ~2030
- ➤ To explore the high statistics data sets, synergies between experiment and theory are essential