Role of a triangular singularity in the $\gamma p \rightarrow p \pi^0 \eta$ reaction

Volker Metag, Mariana Nanova, II. Physikalisches Institut JUSTUS-LIEBIG-VUNIVERSITAT GIESSEN

for the CBELSA/TAPS Collaboration

<u>Outline:</u>

- * observation and characterisation of a structure at $M_{p\eta} \approx 1710 \text{ MeV}$
- * interpretation: triangular singularity at opening of the $\gamma p \rightarrow p a_0$ channel
- summary and conclusions

Exotic Hadron Spectrsocopy 2023 April 19-21, 2022 Durham University, United Kingdom

triangular singularities in hadronic reactions

resonance like signal in π - π - π + final state

genuine new state: a₁(1420) ?? difficult to explain within quark model tetra-quark resonance ??

M. Mikhasenko, B. Ketzer, A Sarantsev PRD 91 (2015) 094105 **COMPASS** collaboration PRL 127 (2021) 082501 $\pi^{-} p \rightarrow a_{1}^{-} (1260) p$ $a_{1}(1260) \rightarrow \pi^{-} \pi^{+} \pi^{-}$ triangular diagram π^{-} a₁-(1260) **K**+ Г≈ 300 MeV f₀(980) **K**- π^{-}

three point (triangular) loop generates structure (singularity) at $\sqrt{s} = 1420$ MeV

many other cases in meson sector: F-K.Guo, X-H.Liu, S.Sakai Prog. Part. Nucl. Phys. 112 (2020) 103757

$\gamma p \rightarrow p \pi^0 \eta$; $E_{\gamma} = 1400 - 1600 \text{ MeV}$

properties of structures as function of the incident photon energy

 $\gamma p \rightarrow p \pi^0 \eta$; $E_{\gamma} = 1420 - 1540 \text{ MeV}$

properties of the structure as function of the excitation energy

signal fitted with Novosibirsk function signal fitted with Gaussian function

systematic error of fits (different fit functions): $\leq 15\%$

 $E_{\gamma} = 1490 \text{ MeV} (\gamma p \rightarrow p a_0 \rightarrow p \pi^0 \eta \text{ threshold})$

observation of a structure at $M_{p\eta} \approx 1710$ MeV in the $\gamma p \rightarrow p \pi^0 \eta$ reaction

comparison to PWA: BnGa 2016-02 (normalized to data in 1550 MeV $< M_{p\eta} < 1680$ MeV) V. Metag, M. Nanova et al., EPJA 57 (2021) 325

structure established with 6 σ

$\gamma p \rightarrow p \pi^0 \eta$; $E_{\gamma} = 1420 - 1540 \text{ MeV}$

comparison to partial wave analysis (PWA) /and phase space distribution (PS)

structure not reproduced by PWA; excess also seen for different $M_{p\pi0}$ cuts structure not caused by cut $M_{p\pi0} < 1190$ MeV

$M_{p\pi0}$ < 1190 MeV _ γ p → p π⁰η; E_{γ} = 1420 - 1540 MeV

(1190 MeV)²

$\gamma p \rightarrow p \pi^0 \eta$; direct observation of an a₀ signal

$$\begin{split} m_{a0} &= 974 \pm 2 \text{ MeV} ; \ \Gamma_{a0} &= 53 \pm 3 \text{ MeV} \\ \text{PDG: } m_{a0} &= 980 \pm 20 \text{MeV} ; \ \Gamma_{a0} &= 50 - 100 \text{ MeV} \\ \sigma_{a0} &= 270 \pm 43 \text{ nb}; \ \sigma_{a0} \text{ (PWA)} = 250 \text{ nb} \\ \text{for } m_{a0} &> 990 \text{ MeV} a_0 \longrightarrow \text{K}^+\text{K}^- \text{ dominant} \end{split}$$

$\gamma p \rightarrow p \pi^0 \eta$; direct observation of an a₀ signal

8

 $p_n = -400.7 MeV$

 $n_{-}= 277 \ 8 \ MeV \cdot R_{-}=0.899$

calculating triangular singularities

p

Calculation of triangular singularity strength

calculation shows enhancement at W=1918 MeV; E_{γ} = 1492 MeV as observed experimentally

calculating triangular singularities

calculation of singularities for 4 incident energies near the a_0 threshold, following Bayar et al. PRD 94 (2016) 074039

E _γ [MeV]	$M_{\pi 0\eta}[MeV]$	M _{pη} [MeV]	M _{pπ0} [MeV]
1549	990	1609	1190
1524	980	1601	1190
1498	970	1591	1190
1473	960	1583	1190

calculating triangular singularities

calculation of singularities for 4 incident energies near the a₀ threshold, following Bayar et al. PRD 94 (2016) 074039 <u>γ p-cm-system:</u> p_p= 122.9 MeV; β_p=0.130 $\beta_{\eta} = -0.590$ E_{γ} [MeV] $M_{\pi0\eta}$ [MeV] $M_{p\eta}$ [MeV] $M_{p\pi0}$ [MeV] 1190 1549 990 1609 p_η= -400.7MeV p_π= 277.8 MeV; β_π=0.899 1524 1601 1190 980 π^0 faster than p 1498 970 1591 1190 π^{0} -p rescattering: 1473 960 1583 1190 $M_{p\pi0} = const = 1190 \text{ MeV}$ $M_{p\eta} \approx 1600 \rightarrow 1700 \; MeV$ singularity events are re-distributed along $M_{\pi 0\eta} \approx 970 \rightarrow 682 \text{ MeV}$ the dashed red line by π^0 -p - rescattering 1800 300 1.0 M_{pη} 1600 GeV²/c⁴) 250 M_{pn}, M_{హŋ} [MeV/c^ב] 1400 E_v = 1448, 1473, 1498, 1524, 1549 MeV GeV²/c⁴ x 0.02 200 1200 $M_{p\pi0} = const$ 150 counts / (0.02 1000 100 0.6 $\mathsf{M}_{\pi\eta}$ 800 50 0.5 $m_{\pi 0} + m_n = 683 \text{ MeV/c}^2$ 600 80 100 120 140 160 180 1.2 1.4 1.6 1.8 0 20 40 60 $M^{2}_{p\pi0}$ [GeV²/c⁴] Θ_{π} [deg] contributions of the 4 selected singularity points with weight given by a₀ line shape blue curve (sum of the 4 contributions) fitted to the data

data qualitatively reproduced by calculations !!

Interference of loop- (triangular) and tree-level amplitudes

thanks to Mathias Wagner (Univ. Bonn)

initially populated nucleon resonance (source of p, a_0): m₁ = 1.95 GeV; $\Gamma_1 = 0.350$ GeV

 $f_{tot} = f_{tree} + f_{loop} = (rel + e^{i\varphi} * f_{triangle}(\sqrt{s}; \Gamma_{a0}, m_{a0}, m_{\Delta})) * BW(\sqrt{s}; m_1, \Gamma_1)$ intensity = |M|²*phasespace

experimentally observed excitation function and $M_{p\pi0}$ distribution reproduced for rel = 0.036; ϕ = - 0.5

more detailed studies require partial wave analysis !!

summary and conclusions

- structure at $M_{p\eta} \approx 1710$ MeV established in $\gamma p \rightarrow p \pi_0 \eta$ reaction for $E_{\gamma} = 1400 - 1600$ MeV
- structure moves and changes shape with incident photon energy
 → no genuine nucleon resonance
- characteristics of structure qualitatively reproduced by calculation based on the triangular loop in the $\gamma p \rightarrow p a_0 \rightarrow p \pi_0 \eta$ reaction; (EPJA 57 (2021) 325)
- loop diagrams and rescattering effects play an important role also in the baryon sector in the interpretation of structures in the excitation spectrum of the nucleon; important to distinguish kinematical singularities from genuine resonances
- not every bump in an invariant mass spectrum is a resonance !

improvements:

calculation not only for 4 selected singularity points

 \rightarrow full partial wave analysis required including the present data

backup

comparison data — PWA outside signal region

PWA describes data very well outside the signal region ($E_{\gamma} = 1420 - 1540$)

calculating triangular singularities

p

Bayar et al. PRD 94 (2016) 074039 energy-momentum balance within the loop has to match the energy-momentum balance of the initial and final state particles:

 $W = E_p(q) + E_{\pi}(q) + E_{\eta}$ $\underline{W} = E_p(q) + E_{a0}(\mathbf{p_{\eta}}-\mathbf{q})$ $E_{\eta} + E_{\pi}(q) - E_{a0}(\mathbf{p_{\eta}}-\mathbf{q}) = 0$ $E_{\eta} + E_{\pi}(q) - \sqrt{m_{a0}^2 + (\mathbf{p_{\eta}}-\mathbf{q})^2} = 0$ q = proton momentum in loop

for given excitation energy W solutions only for certain ($M_{\pi 0\eta}$, $M_{p\pi 0}$) values and if all particles are almost on-mass shell and p, π^0 , η are collinear

probability of π^0 - p rescattering

18

γ p → p π⁰ η; Eγ = 1420 - 1540 MeV

properties of structure as function of the incident photon energy; fit: Gauss

resonance I J^P mass[MeV] width [MeV] br(p a0) br($\eta \Delta(1232)$) reference

$$\begin{split} & N(1880)1/2^{+} \ (1/2,1/2^{+}) \rightarrow a_{0}(1,0^{+}) + p(1/2,1/2^{+}) \ ; \ L = 0 \\ & \Delta(1910)1/2^{+} \ (3/2,1/2^{+}) \rightarrow a_{0}(1,0^{+}) + p(1/2,1/2^{+}) \ ; \ L = 0 \\ & \Delta(1920)3/2^{+} \ (3/2,3/2^{+}) \rightarrow a_{0}(1,0^{+}) + p(1/2,1/2^{+}) \ ; \ L = 2^{p_{p}=122.9 \text{ MeV}; \ \beta_{p}=0.130} \xrightarrow{\beta_{\eta}=-0.590} \\ & \Delta(1940)3/2^{-} \ (3/2,3/2^{-}) \rightarrow a_{0}(1,0^{+}) + p(1/2,1/2^{+}) \ ; \ L = 1^{p_{\pi}=277.8 \text{ MeV}; \ \beta_{\pi}=0.899} \xrightarrow{\beta_{\eta}=-400.7 \text{MeV}} \end{split}$$

W = N(1880)1/2⁺ (I=1/2) would imply isospin violation since $\eta \Delta(1232)$ has I=3/2 !!! if W = $\Delta(1910)1/2^+$ I=3/2 interference with dominating tree level (L_{$\eta\Delta$}= 1; I=3/2); L_{pa0} = 0 if W = $\Delta(1920)3/2^+$ I=3/2 interference with dominating tree level (L_{$\eta\Delta$}= 1; I=3/2); L_{pa0} = 2 if W = $\Delta(1940)3/2^-$ I=3/2 interference with dominating tree level (L_{$\eta\Delta$}= 0,2; I=3/2); L_{pa0}= 1

comparison to previous results

 $\gamma p \rightarrow p \pi^0 \eta$

E_γ= 1400 - 1500 MeV

$$\gamma p
ightarrow p \pi^0 \eta$$

angular distributions of events in structure for $E_{\gamma} = 1420 - 1540$ MeV and $M_{p\pi} < 1190$ MeV in γp cm system

angular distributions for E_{γ} = 1400 - 1450 MeV without $M_{p\pi}$ cut

COMPASS $\pi^{-} p \rightarrow a_{1}^{-} (1260) p$ $a_{1}^{-} (1260) \rightarrow \pi^{-} \pi^{+} \pi^{-}$

triangular diagram

K^{*0} (892); Γ = 47.3 ± 0.5 MeV f₀ (980); Γ ≈ 10 - 100 MeV

search for a narrow structure in M(pη) distribution around 1678 MeV

 \approx 4 times higher statistics

counts/5 MeV

motivation:

observation of narrow N(1685) resonances in $\gamma N \rightarrow \eta \pi N$ reactions

V. Kuznetsov et al., JETP Lett. 106 (2017) 693 exotic state predicted by Chiral Soliton Model

 $E_{\gamma} = 1400 - 1500 \text{ MeV}$ $\theta_{\rm p} < 25^{\circ}; 25^{\circ} < \theta_{\gamma} < 155^{\circ}$ $1120 < M_{p\pi} < 1220 \text{ MeV}$ to suppress dominant decay Δ^* η Δ(1232) π N(938)

100

80

counts / 5 MeV

1678 MeV

motivation:

observation of narrow N(1685) resonances in $\gamma N \rightarrow \eta \pi N$ reactions

V. Kuznetsov et al., JETP Lett. 106 (2017) 693 exotic state predicted by Chiral Soliton Model

D. Diakonov, V. Petrov, and M.V. Polyakov, Z. Phys. A 359 (1997) 305

 $M_{\eta N} = (1678 \pm 0.8(stat) \pm 10(syst)) MeV;$ $\Gamma \approx 10$ MeV; significance 4.6 σ

 $E_{\gamma} = 1400 - 1500 \text{ MeV}$ $\theta_{\rm p} < 25^{\circ}; 25^{\circ} < \theta_{\gamma} < 155^{\circ}$

to suppress

dominant decay

η

π

counts/5 MeV

 Λ^*

Δ(1232)

N(938)

identical conditions:

 $\gamma p \rightarrow p \pi^0 \eta$ **CBELSA/TAPS**

< 45 counts: $\sigma_{\text{structure}} < 6 \text{ nb} (3\sigma)$ structure cannot be confirmed !!! $\gamma p \rightarrow p \pi^0 \eta$

$E_{\gamma} = 1400 - 1500 \text{ MeV}$

 $M_{p\pi} < 1190 \text{ MeV}$

statistical significant structure observed at $M_{p\eta} \approx 1700 \text{ MeV}$

 $M_{p\eta} = (1700 \pm 1.9) \text{ MeV}; \Gamma = (35.4 \pm 7.0) \text{ MeV}$

structure established at 6.8 σ