Charm baryons at finite temperature on anisotropic lattices

R. Bignell¹, G. Aarts¹, C. Allton¹, M.N. Anwar¹, T. Burns¹, B. Jäger², J. Skullerud³

¹ Swansea University

² University of Southern Denmark

³ National University of Ireland Maynooth

Exotic Hadron Spectroscopy 2023 April 19 - 21, 2023

Motivation

- Charm hadrons are important probes of quark-gluon plasma
- More experimentally accessible than bottom hadrons
- Pheno. models and heavy-quark effective field theories are viable

Motivation

Figure: Summary of lattice QCD results for single charmed baryon masses. Lines are experimental masses. Figure from Padmanath **2109.04748**.

Motivation

- · Charm hadrons are important probes of quark-gluon plasma
- More experimentally accessible than bottom hadrons
- Pheno. models and heavy-quark effective field theories are viable
- Few lattice studies on charm baryons at non-zero temperature
 - Extend our previous work on light baryons and hyperons

What are we going to do?

- Calculate charm baryon correlators at a range of temperatures
- Investigate change in correlator as temperature changes
- Determine positive and negative parity masses for each channel as a function of temperature
- Examine the parity doubling effect
 - A signature of chiral symmetry restoration

How

$N_{ au}$	128	64	56	48	40	36	32	28
T (MeV)	47	95	109	127	152	169	190	217
$T/T_c \sim$	0.285	0.570	0.651	0.760	0.912	1.013	1.139	1.302

• FASTSUM Generation 2L $N_f = 2 + 1$ anisotropic ensembles

• $m_{\pi} \sim 230$ MeV, $\xi \sim 3.5$, $T_c \sim 167$ MeV, $N_{meas} \sim 8000$

• Standard baryon operators $[q C \gamma_5 q] q$ (mostly), i.e.

$$\mathcal{O}_{1/2}^{\alpha}\left(\Omega_{ccs}\right) = \epsilon_{abc} \boldsymbol{c} \alpha^{a} \left(\boldsymbol{c} \gamma^{b} \left[\boldsymbol{C} \gamma_{5}\right]_{\gamma \beta} \boldsymbol{s} \beta^{c}\right)$$

- Calculations performed using openQCD-FASTSUM
 - https://gitlab.com/fastsum, https://doi.org/10.5281/zenodo.2217027
 - stout-link and source/sink smearing

Correlator Temperature Dependence

R. Bignell

0

Single Ratio

- Consider model correlator only ground state G_F
- Use zero-temperature ($N_{\tau} = 128$) correlator to inform mass
- This accounts for the finite-size of the higher temperatures
- Take ratio of lattice correlator $G(\tau; T)$ to model correlator G_F

 $r(\tau; T, T_0) = G(\tau; T)/G_F(\tau; T, T_0).$

Single Ratio $r(\tau; T, T_0) = G(\tau; T)/G_F(\tau; T, T_0)$

Single Ratio $r(\tau; T, T_0) = G(\tau; T)/G_F(\tau; T, T_0)$

Double Ratio

Construct double ratio of different temperatures

- Removes excited state effects
- Differences from one show difference in correlator

$$\begin{aligned} R(\tau; T, T_0) &= \frac{r(\tau; T, T_0)}{r(\tau; T_0, T_0)} \\ &= \frac{G(\tau; T)}{G_F(\tau; T, T_0)} \bigg| \frac{G(\tau; T_0)}{G_F(\tau; T_0, T_0)} \end{aligned}$$

Ratio Summary

- Use the double ratio examine change of correlator with temperature
- · Set bounds on when to use exponential fits to extract masses
- Ratios show strong evidence of change *before* the pseudocritical temperature $T_c \sim 167 \text{ MeV}$

Fit Window Dependence

Fit Window Dependence

Model Averaging Methods

- Systematic approach to selection of "fit window"
- Weighted average over all possible fit windows
- Two different methods used to increase confidence in the result
 - First method uses modified Akaike information criterion W. Jay, E. Neil: 2008.01069

$$\tilde{w}^{f} = pr(M_{f}|D) = \exp\left(-\frac{1}{2}\left(\chi^{2}_{aug}(E^{f}) + 2k + 2N_{cut}\right)\right),$$

Second method weights proportionally to statistical error and *p*-value
 E. Rinaldi, *et al.*: 1901.07519

$$\tilde{w}^{f} = \frac{p_{f} \left(\delta E^{f}\right)^{-2}}{\sum\limits_{f'=1}^{N} p_{f'} \left(\delta E^{f'}\right)^{-2}},$$

Model Averaging Results

Effective mass comparison

R. Bignell

17/28

Zero-temperature spectrum J = 1/22212.09371

R. Bianell

All temperature Spectrum J = 1/2*C* = 2 $\Xi_{cc}(ccu)$ $\Omega_{cc}(ccs)$ 4.4 4.4 4.2 4.2 Å. ŵ Mass (GeV) 4.0 4.0 \$ 3.8 3.8 3.6 3.6 Pos. Par. Lat. --- Pos. Par. Exp. Neg. Par. Lat. 50 150 100 200 50 100 150 200 Temperature (MeV) R. Bignell Charm Baryons Exotics '23 20/28

٢

All temperature Spectrum J = 1/2Normalised mass difference

R. Bianell

Mass Summary

- Model averaging methods used to determine mass from correlator fits
 - of positive and negative parity states
 - at multiple temperatures
- Uncertainty increases as temperature does
 - Likely signifies increasingly incorrect fit ansatz

Parity Doubling

- Examine emergence of parity doubling in baryonic correlators
 - Signal of chiral symmetry restoration
- Construct from positive $(G^+(\tau))$ and negative $(G^-(\tau) = G^+(1/T \tau))$ correlators

$$\mathcal{R}(\tau) = \frac{\mathbf{G}^{+}(\tau) - \mathbf{G}^{-}(\tau)}{\mathbf{G}^{+}(\tau) + \mathbf{G}^{-}(\tau)},$$
$$\mathbf{R}(\tau_{n}) = \frac{\sum_{n}^{\frac{1}{2}N_{\tau}-1} \mathcal{R}(\tau_{n}) / \sigma_{\mathcal{R}}^{2}(\tau_{n})}{\sum_{n}^{\frac{1}{2}N_{\tau}-1} 1 / \sigma_{\mathcal{R}}^{2}(\tau_{n})}$$

Parity doubling ratio R, J = 1/2

Previous studies on same ensembles: Aarts et al. 2007.04188

Parity doubling ratio R, J = 1/2

Inflection Points $\sim T_c$

- Parity doubling effect decreases as quark mass increases
 - Quark mass explicitly breaks chiral symmetry
 - As does Wilson-Clover action
- Can still find inflection points for most baryons here
 - Even where parity doubling is not very evident!
 - Inflection points are close to T_c from the renormalised chiral condensate
- Exponential mass fits grow unreliable at higher temperatures
- Model averaging methods aids mass determination from many fits

FASTSUM Collaboration

- Employs anisotropic lattice QCD to study finite temperature systems
 - Anisotropy allows fine temperature and is conceptually clear $N_{\tau} \propto 1/T$
- Have studied wire variety of properties
 - charmonium, open-charm, bottomonium, light and strange baryons
 - electrical conductivity of QCD matter, properties of the chiral transition
- A recent summary: Skullerud et al. 2211.13717, Allton et al. 2301.10282
- D-mesons: Aarts et al. 2211.13717
- Bottomonium spectral functions: Spriggs *et al.* **2112.04201**, Page *et al.* **2112.02075**
- Inter-quark (bottomonium) potential, Quark/Gluon propagator & more

BONUS SLIDES

Model Correlator

- Single 'forward' positive ground state with mass *m*⁺
- Single 'backward' negative ground state with mass *m*⁻

$$G_{F}\left(au; N
ight) = rac{{
m e}^{-m^{+} au}}{1+{
m e}^{-Nm^{+}}} + rac{{
m e}^{m^{-} au}}{1+{
m e}^{Nm^{-}}}.$$

- Accounts for periodicity of finite $N_{\tau} = N$ lattice
- Uses masses m^{\pm} determined at $N_{\tau} = N_0$, i.e. at T_0

BONUS SLIDES

Reconstructed Correlator

• Consider spectral relation of fermion correlators

$$G(\tau) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} K_F(\tau, \omega) \rho(\omega),$$

- Allows correlator at N_{τ} to be written as a sum over the correlator at $N_0 < N_{\tau}$
- i.e. Account for shorter lattice time

$$G_{F,\text{rec}}(\tau; N_{\tau}, N_0) = \sum_{n=0}^{m-1} (-1)^n G_F(\tau + nN_{\tau}; N_0).$$

BONUS SLIDES

Reconstructed Ratio Ω_{cc} (ccs)

