Discriminating among models for X(2900) states

Tim Burns (Swansea University) Exotic Hadron Spectroscopy, 19 April 2023

Prologue:

$P_{c}(4312), P_{c}(4440), P_{c}(4457)$ and $P_{\psi s}^{\Lambda}(4338)$

[T.B. & E.Swanson, 1908.03528 (PRD)]

[T.B. & E.Swanson, 2112.11527 (EPJA)]

[T.B. & E.Swanson, 2207.00511 (PRD)]

[T.B. & E.Swanson, 2208.05106 (PLB)]

 $\Lambda_b \rightarrow J/\psi \, p \, K^-$: states decaying to $J/\psi p \, (uudc \bar{c})$

Model

The "blob" is non-perturbative FSIs constrained by HQS

[Related work: Du, Baru, **Guo**, Hanhart, Meißner, Oller, Wang 1910.11846 (PRL), 2102.07159 (JHEP)]

Case 1: $P_c(4457)$ as a $\Sigma_c \bar{D}^*$ cusp

Case 2: $P_c(4312)$, " $P_c(4380)$ " and $P_c(4440)$ bind

Case 4: $P_c(4457)$ as a $\Lambda_c(2595)\overline{D}$ triangle singularity

Case 5: $P_c(4457)$ as a $1/2^+$ $\Lambda_c(2595) \bar{D}$ resonance

 $\Xi_c \overline{D}$ molecule? Karliner/Rosner, Wang/Liu, **Ortega** et al. But note it is not bound.

Similar (but simpler) model gives a decent fit

The peak at $\Lambda_c^+ D_s^-$ threshold is a cusp The $P^{\Lambda}_{\psi s}(4338)$ peak at $\Xi_c \bar{D}$ threshold is a triangle singularity

X(2900) in B decays

[T.B. & Swanson 2008.12838 (PLB)]

[T.B. & E.Swanson, 2009.05352 (PRD)]

LHCb: X(2900) states in $B^+ \rightarrow D^+X$, $X \rightarrow D^-K^+$

Experimental properties

Two X(2900) states in $B^+
ightarrow D^+ X$, $X
ightarrow D^- K^+$

Their minimal flavour content is udsc

X ₀ (2900) X ₁ (2900)	$\begin{array}{c} 2.866 \pm 0.007 \pm 0.002 \ \text{GeV} \\ 2.904 \pm 0.005 \pm 0.001 \ \text{GeV} \end{array}$	0+ 1-
$ar{D}^*K^*$	2.902 GeV	0 ⁺ , 1 ⁺ , 2 ⁺ (in S-wave)
$ar{D}_1(2420)K$	2.917 GeV	1 ⁻ (in S-wave)

Tetraquark

Tetraquark interpretations:

- [Karliner & Rosner, 2008.05993]
- [He, Wang & Zhu, 2008.07145]

[Zhang, 2008.07295]

But

- No evidence for bound udsc in lattice [Hudspith et al 2006.14294], quark model [Zouzou et al 1986], QCD sum rules [Agaev et al 1907.04017]
- Mass inconsistent with variational quark model [Lu, Chen, Dong, 2008.07340]
- If X(2900) are orbital/radial excitations, where are ground states?
- ▶ 1⁻ state awkward (P-wave)

Molecule

Many models for $0^+ X_0(2900)$:

- ▶ isoscalar D̄*K* with vector hidden gauge [Molina et al 1005.0355, 2008.11171]
- ▶ isoscalar \overline{D}^*K^* with effective Lagrangian [Liu et al 2008.07389]
- ▶ isovector D
 ^{*}K^{*} with effective Lagrangian [He and Chen 2008.07782]
- ▶ isoscalar D̄*K* with heavy quark symmetry [Hu et al 2008.06894]
- ▶ isoscalar D̄*K* with molecular and diquark d.o.f. [Chen et al 2008.07516, Xue et al 2008.09516]

The $1^- X_1(2900)$ is more difficult:

▶ virtual state from $\bar{D}_1(2420)K$ [He and Chen 2008.07782]

This is an example fit.

Given parametric freedom, can't really distinguish triangle scenario (weak FSIs) from resonance scenario (strong FSIs)

Results for $X_1(2900)$ and its charged partners (For $X_0(2900)$ scale by 5.6 / 30.6)

	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, ${\cal I}$ mixed	30.6	23.2	$4.3 \tan^2 \left(\theta + \frac{\pi}{4} \right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4} \right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

Results for $X_1(2900)$ and its charged partners								
(FOI $\Lambda_0(2900)$ S	(FOI A ₀ (2900) Scale by 5.07 50.07							
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$		
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7		
$f(B \to DX, X \to \bar{D}K)$	$f(B \to DX, X \to \bar{D}K)$							
Triangle, QE	30.6	23.2	0	0	4.6	8.3		
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1		
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$		
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0		
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4		
Resonance, I mixed	30.6	23.2	$4.3 \tan^2\left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$				
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41		

•

Results for X_1 (For $X_0(2900)$ s	(2900) and scale by 5.6	its charged / 30.6)	partners	charged X modes		
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array}$	$\begin{array}{c} B^+ \rightarrow D^0 X^+, \\ X^+ \rightarrow \bar{D}^0 K^+ \end{array}$	$B^0 \to D^+ X^-, \\ X^- \to D^- K^0$
$\mathcal{B}(B \to D\bar{D}K)$	$2.2\ \pm 0.7$	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3 \tan^2\left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

	triangle diagram with quark-exchange (QE), one-pion exchange (OPE) or effective field theory (EFT) interactions						
/		$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
1	$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	$14.5\ \pm 3.3$	7.5 ± 1.7
,	$f(B \to DX, X \to \bar{D}K)$)					
	Triangle, QE	30.6	23.2	0	0	4.6	8.3
	Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
	Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
	Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
	Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
_	Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
2	$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

		$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^+ \rightarrow D^0 X^+, \\ X^+ \rightarrow \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
B	$(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
f	$(B \to DX, X \to \bar{D}K)$						
	Triangle, QE	30.6	23.2	0	0	4.6	8.3
	Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
	Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$
ſ	Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
	Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
l	Resonance, I mixed	30.6	23.2	$4.3 \tan^2\left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4} \right)$		
Δ	f/f	0.1	0.53	0.36	0.35	0.41	0.41

Resonance, either molecular or tetraquark Mixed isospin case relevant for molecule

$f(B \to DX, X -$	$(B \to DX, X \to \overline{D}K) = \mathcal{B}(B \to DX, X \to \overline{D}K)$							
(,	$\mathcal{B}(B \to L)$	$(\bar{D}K)$					
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \to D^+ X^-, \\ X^- \to D^- K^0 \end{array}$		
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7		
$f(B \to DX, X \to \bar{D}K)$								
Triangle, QE	30.6	23.2	0	0	4.6	8.3		
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1		
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$		
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0		
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4		
Resonance, I mixed	l 30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$				
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41		

$f(B \to DX, X \to$	$(\bar{D}K) = \mathcal{B}$	$\frac{\mathcal{B}(B \to DX, Z)}{\mathcal{B}(B \to D)}$	$X \to \bar{D}K)$ $\bar{D}\bar{D}K)$	relations and sma	among mat Il correction	rix elements (B lifetime)
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$B^0 \to D^0 X, \\ X \to D^- K^+$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
${\cal B}(B\to D\bar{D}K)$	$2.2\ \pm 0.7$	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

$f(B \to DX, X \to$	$\bar{D}K) = \mathcal{B}$	$\frac{\mathcal{B}(B \to DX, Z)}{\mathcal{B}(B \to D)}$	$X \to \bar{D}K)$ $\bar{D}\bar{K})$	matrix o	elements eq	ual
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$B^0 \to D^0 X, \\ X \to D^- K^+$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
${\cal B}(B\to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

$f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\left[\mathcal{B}(B \to DDK)\right]}$				enhanceme	ent if 3-body	small
	$B^+ \to D^+ X, \\ X \to D^- K^+$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array}$	$\begin{array}{c} B^+ \rightarrow D^0 X^+, \\ X^+ \rightarrow \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$	1					
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3 \tan^2\left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

$\mathcal{B}(B \to D\bar{D}K)$						
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array}$	$\begin{array}{c} B^+ \rightarrow D^0 X^+, \\ X^+ \rightarrow \bar{D}^0 K^+ \end{array}$	$B^0 \to D^+ X^-, \\ X^- \to D^- K^0$
$\mathcal{B}(B \to D\bar{D}K)$	$2.2\ \pm 0.7$	$2.7\ \pm 1.1$	15.5 ± 2.1	$10.7 \ \pm 1.1$	14.5 ± 3.3	$7.5\ \pm 1.7$
$f(B \to DX, X \to \bar{D}K)$	1					
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2\left(1+\tfrac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, ${\cal I}$ mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

fractional uncertainty

$f(B \to DX, X \to \bar{D}K)$	=	$\mathcal{B}(B \to DX, X \to \bar{D}K)$
		$\mathcal{B}(B \to D\bar{D}K)$

$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
30.6	23.2	0	0	4.6	8.3
30.6	23.2	1.1	1.5	1.2	2.1
30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1 - \frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\frac{C_0}{C_1}\right)^2$
30.6	23.2	4.3	5.8	0	0
30.6	23.2	4.3	5.8	18.6	33.4
30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
0.1	0.53	0.36	0.35	0.41	0.41
	$B^+ \rightarrow D^+ X, X \rightarrow D^- K^+$ 2.2 ± 0.7 30.6 30.6 30.6 30.6 30.6 30.6 0.1	$\begin{array}{cccc} B^+ \to D^+ X, \\ X \to D^- K^+ \\ \end{array} & \begin{array}{c} B^0 \to D^0 X, \\ X \to D^0 K^0 \\ \end{array} \\ \hline 2.2 \pm 0.7 \\ 2.7 \pm 1.1 \\ \hline 30.6 \\ 23.2 \\ 30.6 \\ 23.2 \\ 30.6 \\ 23.2 \\ 30.6 \\ 23.2 \\ 30.6 \\ 23.2 \\ 30.6 \\ 23.2 \\ \hline 30.6 \\ \hline$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

existing channel is largest

$f(B \to DX, X \to \bar{D}K)$	=	$\mathcal{B}(B \to DX, X \to \bar{D}K)$
		$\mathcal{B}(B \to D\bar{D}K)$

	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$B^0 \to D^0 X, X \to \bar{D}^0 K^0$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1 - \frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

neutral mode is comparable

general prediction, same for all models

$f(B \to DX, X \to \bar{D}K)$	=	$\mathcal{B}(B \to DX, X \to \bar{D}K)$
		$\mathcal{B}(B \to D\bar{D}K)$

	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

remaining predictions discriminate among models , uncertainties are large but predictions still discriminate

$f(B \to DX, X \to \bar{D}K)$	=	$\mathcal{B}(B \to DX, X \to \bar{D}K)$
		$\mathcal{B}(B \to D\bar{D}K)$

	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$B^0 \to D^0 X, \\ X \to D^- K^+$	$\begin{array}{c} B^+ \rightarrow D^0 X^+, \\ X^+ \rightarrow \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$	
${\cal B}(B\to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7	
$f(B \to DX, X \to \bar{D}K)$							
Triangle, QE	30.6	23.2	0	0	4.6	8.3	
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1	
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$	
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0	
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4	
Resonance, I mixed	30.6	23.2	$4.3 \tan^2 \left(\theta + \frac{\pi}{4} \right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$			
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41	
same production mode							

$f(B \to DX, X \to \bar{D}K)$	=	$\mathcal{B}(B \to DX, X \to DK)$
		$\mathcal{B}(B \to D\bar{D}K)$

	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^+ \rightarrow D^0 X^+, \\ X^+ \rightarrow \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$	
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7	
$f(B \to DX, X \to \bar{D}K)$							
Triangle, QE	30.6	23.2	0	0	4.6	8.3	
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1	
Triangle, EFT	30.6	23.2	$1.1\left(1-\frac{C_0}{C_1}\right)^2$	$1.5\left(1 - \frac{C_0}{C_1}\right)^2$	$1.2\left(1+\tfrac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$	
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0	
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4	
Resonance, I mixed	30.6	23.2	$4.3 \tan^2\left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4} \right)$			
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41	
same production mode							

$f(B \to DX, X \to X)$	$X, X \to DK) = \frac{\mathcal{B}(D \to DX, X \to X)}{\mathcal{B}(B \to D\bar{D}K)}$			selection rule			
	$B^+ \to D^+ X, \\ X \to D^- K^+$	$B^0 \to D^0 X, X \to \bar{D}^0 K^0$	$ \begin{array}{c} B^+ \to D^+ X, \\ X \to \overline{D}^0 K^0 \end{array} $	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \to D^+ X^-, \\ X^- \to D^- K^0 \end{array}$	
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7	
$f(B \to DX, X \to \bar{D}K)$							
Triangle, QE	30.6	23.2	0	0	4.6	8.3	
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1	
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1 - \frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\frac{C_0}{C_1}\right)^2$	
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0	
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4	
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$			
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41	
	sam	e production m	iode	-			

$(B \to DX, X \to \overline{D}K) = \frac{\mathcal{B}(B \to DX, X \to DK)}{\mathcal{B}(B \to D\overline{D}K)}$					discriminates, despite large uncertainties		
	$B^+ \to D^+ X, \\ X \to D^- K^+$	$B^0 \to D^0 X, X \to \bar{D}^0 K^0$	$ \begin{array}{c} B^+ \to D^+ X, \\ X \to \overline{D}^0 K^0 \end{array} $	$B^0 \to D^0 X, \\ X \to D^- K^+$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$B^0 \to D^+ X^-, \\ X^- \to D^- K^0$	
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7	
$f(B \to DX, X \to \bar{D}K)$							
Triangle, QE	30.6	23.2	0	0	4.6	8.3	
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1	
Triangle, EFT	30.6	23.2	$1.1\left(1-\frac{C_0}{C_y}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\frac{C_0}{C_1}\right)^2$	
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0	
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4	
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$)		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41	
same production mode							

	,	$\mathcal{B}(B \to D)$	$(\bar{D}K)$	со	nstraint on co	ntact terms
	$B^+ \to D^+ X, \\ X \to D^- K^+$	$B^0 \to D^0 X, X \to \bar{D}^0 K^0$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$B^0 \to D^0 X \\ X \to D^- K^+$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \to D^+ X^-, \\ X^- \to D^- K^0 \end{array}$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1\left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1 - \frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3 \tan^2\left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4} \right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41
	sam	e production m	ode	-		

$f(B \to DX, X \to X)$	$(\overline{D}K) = \frac{\mathcal{B}(B \to DX, X \to \overline{D}K)}{\mathcal{B}(B \to D\overline{D}K)}$			constraint on isospin mixing angle		
	$B^+ \to D^+ X, \\ X \to D^- K^+$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$ \begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array} $	$ \begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array} $	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$B^0 \to D^+ X^-, \\ X^- \to D^- K^0$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	9	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1 - \frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8\tan^2\left(\theta-\frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41
	sam	e production m	iode			

$f(B \to DX, X \to \bar{D}K)$	=	$\mathcal{B}(B \to DX, X \to \bar{D}K)$
		$\mathcal{B}(B \to D\bar{D}K)$

	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$B^0 \to D^0 X, \\ X \to \overline{D}^0 K^0$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$B^0 \to D^0 X, \\ X \to D^- K^+$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$	1					
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1 - \frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2\left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

similar patterns for neutral X in neutral B decays

$f(B \to DX, X \to$	$\rightarrow \bar{D}K) = \mathcal{B}(B \rightarrow DX, X \rightarrow DK)$			triangle selection rule opposite			
	$\mathcal{B}(B \to D\bar{D}K)$			/			
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$B^0 \to D^0 X, \\ X \to \overline{D}^0 K^0$	$B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0$	$ \begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array} $	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array}$	$B^0 \to D^+ X^-, \\ X^- \to D^- K^0$	
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7	
$f(B \to DX, X \to \bar{D}K)$							
Triangle, QE	30.6	23.2	0	0	4.6	8.3	
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1	
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$	
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0	
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4	
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8\tan^2\left(\theta-\frac{\pi}{4}\right)$			
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41	

similar patterns for neutral X in neutral B decays

$f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)}$					charged partners discriminate among models	
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array}$	$ \begin{array}{c} B^+ \rightarrow D^0 X^+, \\ X^+ \rightarrow \bar{D}^0 K^+ \end{array} $	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
${\cal B}(B\to D\bar{D}K)$	$2.2\ \pm 0.7$	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$	1					
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

$(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to DK)}{\mathcal{B}(B \to D\bar{D}K)}$				charged partners discriminate among models		
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$ \begin{array}{c} B^+ \rightarrow D^0 X^+, \\ X^+ \rightarrow \bar{D}^0 K^+ \end{array} $	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
$\mathcal{B}(B \to D\bar{D}K)$	$2.2\ \pm 0.7$	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8 <	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8\tan^2\left(\theta-\frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

E TO

10/ 0

absent only in I=0 resonance scenario

$(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to DK)}{\mathcal{B}(B \to D\bar{D}K)}$					charged partners discriminate among models	
	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to \bar{D}^0 K^0 \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^- K^+ \end{array}$	$ \begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to \bar{D}^0 K^+ \end{array} $	$\begin{array}{c} B^0 \rightarrow D^+ X^-, \\ X^- \rightarrow D^- K^0 \end{array}$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(B \to DX, X \to \bar{D}K)$	1					
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5\left(1-\frac{C_0}{C_1}\right)^2$	$1.2\left(1+\frac{C_0}{C_1}\right)^2$	$2.1\left(1+\tfrac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3\tan^2\left(\theta+\frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41

E TO

10 (D D TT TT

enormous fit fractions in I=1 resonance scenario

Conclusions

 P_c states in Λ_b → J/ψp K⁻ are well-described by a model with colour-favoured production and heavy-quark symmetry

 P^Λ_{ψs}(4338) in B⁻ → J/ψΛp̄ is described by a similar model, where it is due to the triangle singularity.

Conclusions

	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^- K^+ \end{array}$	$\begin{array}{c} B^0 \to D^0 X, \\ X \to D^0 K^0 \end{array}$	$\begin{array}{c} B^+ \to D^+ X, \\ X \to D^0 K^0 \end{array}$	$\begin{array}{c} B^0 \rightarrow D^0 X, \\ X \rightarrow D^- K^+ \end{array}$	$\begin{array}{c} B^+ \to D^0 X^+, \\ X^+ \to D^0 K^+ \end{array}$	$B^0 \rightarrow D^+ X^-$, $X^- \rightarrow D^- K^0$	
$B(B \rightarrow D\bar{D}K)$	$2.2\ \pm 0.7$	$2.7\ \pm 1.1$	15.5 ± 2.1	$10.7\ \pm 1.1$	14.5 ± 3.3	$7.5~\pm 1.7$	
$f(B \rightarrow DX, X \rightarrow DK)$							
Triangle, QE	30.6	23.2	0	0	4.6	8.3	
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1	
Triangle, EFT	30.6	23.2	$-1.1\left(1-\frac{C_0}{C_1}\right)^2$	$1.5 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 \pm \frac{C_4}{C_3}\right)^2$	
Resonance, $I = 0$	30.6	23.2	4.3	5.8 <	0	0	
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4	
Resonance, I mixed	30.6	23.2	$-4.3 \tan^2 \left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$			
$\Delta f/f$	0.1	0.53	0,35	0.35	0.11	0.41	
	absent only in IaO resonance scenario						

 D^+

Triangle and resonance scenarios fit experimental data in amplitude model

Assuming

- dominance of colour-favoured transitions, and
- isospin

we get relations among fit fractions

Six possible modes

- some new modes have very large fit fraction
- pattern can discriminate among models