Puzzles of Heavy Baryons

Mikhail Mikhasenko

ORIGINS Excellence Cluster, Munich

April 21st, 2023 Exotic Hadron Spectroscopy

2 Experimental measurements

- *Σ*_Q
- *Ξ*_Q
- Ω_Q
- 3 Polarimetry
 - General polarimetry
 - Polarimeter field

Why studying charm hadrons?

- Two types of exotics:
 - Genuine exotics no convent. expected
 - Mixture the conventional states are influenced particle interaction. Mass shift towards the strongly-coupled threshold.
- b/c hadrons are narrow
- Level-splitting hierarchy due to $1/m_Q$

Why studying charm hadrons?

- Two types of exotics:
 - Genuine exotics no convent. expected
 - Mixture the conventional states are influenced particle interaction.
 Mass shift towards the strongly-coupled threshold.
- b/c hadrons are narrow
- \bullet Level-splitting hierarchy due to $1/m_Q$

Puzzles of Heavy Baryons

Lattice QCD: 5 λ modes and 2 ρ modes

Misha Mikhasenko (ORIGINS)

Heavy-quark-diquark system

Charm-baryon sectors

- Heavy quark is **static** and **spinless** in the limit $m_Q \rightarrow \infty$.
- Excitations of Qqq are governed by the light diquark

•
$$q \uparrow (J^P = \frac{1}{2}^+) \otimes q \uparrow (J^P = \frac{1}{2}^+) \Rightarrow \underbrace{\uparrow \downarrow (J^P = 0^+)}_{\text{"good"}} \text{and} \underbrace{\uparrow \uparrow (J^P = 1^+)}_{\text{"bad"}}$$

• Excitation pattern is different for "good" and "bad" diquarks

Structure:

• Radial and orbital excitations

Structure:

- Radial and orbital excitations
- Light d.o.f.: Spin-Orbit splitting

Misha Mikhasenko (ORIGINS)

Structure:

- Radial and orbital excitations
- Light d.o.f.: Spin-Orbit splitting
- "Hyperfine" doublets: heavy-quark spin

Orbital quantum numbers

Orbital quantum numbers

Structure:

- Radial and orbital excitations
- Light d.o.f.: Spin-Orbit splitting
- "Hyperfine" doublets: heavy-quark spin

Counting of states - model independent

Size of splitting, the order

- differs from model to model

Phenomenological models

- Agree on the general pattern
- Agree on relation between the sectors

[Faustov-Galkin, EPJ Web Conf. 204 (2019) 08001]
[Roberts-Pervin, Int.J.Mod.Phys.A 23 (2008) 2817-2860]
[Shah-Thakkar-Rai-Vinodkumar, EPJA 52 (2016) 10, 313]

- Often neglect the diquark excitation
- Disagree on the splitting and the order

Phenomenological models

- Agree on the general pattern
- Agree on relation between the sectors

[Faustov-Galkin, EPJ Web Conf. 204 (2019) 08001]
[Roberts-Pervin, Int.J.Mod.Phys.A 23 (2008) 2817-2860]
[Shah-Thakkar-Rai-Vinodkumar, EPJA 52 (2016) 10, 313]

- Often neglect the diquark excitation
- Disagree on the splitting and the order

Strong transitions to a baryon and a pseudoscalar

$$\begin{aligned} \Omega_{c}^{**0} &\to \Xi_{c}^{+} K^{-} & \Xi_{c}^{**0} \to \Lambda_{c}^{+} K^{-} & \Sigma_{c}^{**0} \to \Lambda_{c}^{+} \pi^{-} \\ \Omega_{b}^{**-} &\to \Xi_{b}^{0} K^{-} & \Xi_{b}^{**-} \to \Lambda_{b}^{0} K^{-} & \Sigma_{b}^{**-} \to \Lambda_{b}^{0} \pi^{-} \end{aligned}$$

HQSS $(m_Q \rightarrow \infty)$ gives the selection rule based on the light d.o.f. [Chiladze, Falk, PRD 56 (1997)] Can be applied to the decay to ground-state baryon and pseudoscalar (B + P):

(light d.o.f.)	J ^P (light d.o.f.)	J^P	B + P (light d.o.f.)	B + P
	0-	$1/2^{-}$	S-wave	S-wave
<u> </u>	1-	$1/2^{-}$	forbidden	S-wave
	1	$3/2^{-}$	forbidden	D-wave
		$3/2^{-}$	D-wave	D-wave
\downarrow HF (J^P)		$5/2^{-}$	D-wave	D-wave
12-32		$1/2^{-}$	forbidden	S-wave
3- 5-	1	$3/2^{-}$	forbidden	S-wave
1- <u>3</u> - <u>2</u>				
$\frac{1}{2}$ 2P	Four of seven are expected to be suppressed			
Misha Mikhasenko (ORIGINS)	Puzzles of Heavy Baryons		April 21 st 2023	

8/30

Experimental results

 $\varSigma_b^{**\pm}$ states in prompt production [LHCb:2018haf] \varLambda_b^{0} is reconstructed in $\varLambda_c^+\pi^-$

• One clear structure but anomalously broad

 $\varSigma_b^{**\pm}$ states in prompt production [LHCb:2018haf] \varLambda_b^{0} is reconstructed in $\varLambda_c^+\pi^-$

• One clear structure but anomalously broad

 $\varSigma_b^{**\pm}$ states in prompt production [LHCb:2018haf] \varLambda_b^{0} is reconstructed in $\varLambda_c^+\pi^-$

- One clear structure but anomalously broad
- Splitting from Ω_b^{**-} indicates that it will be difficult to resolve.

 Ξ_c^{**0} states in prompt production

$$\Xi_{c}^{**0} \begin{pmatrix} c \\ s \\ d \end{pmatrix} \to \Lambda_{c}^{+} \begin{pmatrix} c \\ u \\ d \end{pmatrix} + K^{-} \begin{pmatrix} s \\ \overline{u} \end{pmatrix}$$

[LHCb, PRL 124, 222001 (2020)]

- Four structures are clearly visible
- More cumbersome partially-reconstructed decays
- No fifth narrow state
- The peaks are wider(!)

 Ξ_c^{**0} states in prompt production

$$\Xi_{c}^{**0} \ \begin{pmatrix} c \\ s \\ d \end{pmatrix} \to \Lambda_{c}^{+} \ \begin{pmatrix} c \\ u \\ d \end{pmatrix} \ + \ \mathcal{K}^{-} \ \begin{pmatrix} s \\ \bar{u} \end{pmatrix}$$

[LHCb, PRL 124, 222001 (2020)]

- Four structures are clearly visible
- More cumbersome partially-reconstructed decays
- No fifth narrow state
- The peaks are wider(!)
- \bullet Same peak spacing as for \varOmega_c^{**0}

Ξ_c^{**} states in *B* decays

- from e^+e^- machine [Belle:2017jrt]
- Ξ_c^{**0} structures in *B* decay

$$B^0 \to \Lambda_c^+ \overline{\Lambda}_c^- K^0$$

Ξ_c^{**} states in *B* decays

- from e^+e^- machine [Belle:2017jrt]
- Ξ_c^{**0} structures in *B* decay

$$B^+ \to \Lambda_c^+ \overline{\Lambda}_c^- K^+$$

Ξ_c^{**} states in *B* decays

- from e^+e^- machine [Belle:2017jrt]
- Ξ_c^{**0} structures in *B* decay

$$B^0 o \Lambda_c^+ \overline{\Lambda}_c^- K^0$$

- in *pp* collisions [LHCb:2022vns]
- Two dominant states:
 - $\Xi_c(2923)^0$ with $\Gamma = 4.8 \pm 0.9 \pm 1.5$ MeV
 - $\Xi_c(2939)^0$ with $\Gamma = 11.0 \pm 1.9 \pm 7.5$ MeV
- want to interfere (both $3/2^{-}$?)

 Ξ_b^{**-} states in prompt production Λ_b^0 is reconstructed in two final states: $\Lambda_c^+\pi^-$ and $\Lambda_c^+\pi^+\pi^-\pi^-$

[LHCb, PRD 103, 012004 (2021)]

• One clear structure but anomalously broad

 Ξ_b^{**-} states in prompt production Λ_b^0 is reconstructed in two final states: $\Lambda_c^+\pi^-$ and $\Lambda_c^+\pi^+\pi^-\pi^-$

[LHCb, PRD 103, 012004 (2021)]

• One clear structure but anomalously broad

 Ξ_b^{**-} states in prompt production Λ_b^0 is reconstructed in two final states: $\Lambda_c^+\pi^-$ and $\Lambda_c^+\pi^+\pi^-\pi^-$

[LHCb, PRD 103, 012004 (2021)]

- One clear structure but anomalously broad
- Splitting from Ω_b^{**-} indicates that it will be hard to resolve.

\varOmega^{**0}_{c} states in prompt hadroproduction [LHCb:2017uwr]

- 5 super-narrow structures
- I broad structure
- 3 gray components partially reconstructed $\Omega_c^{**0} \rightarrow \Xi_c^{\prime+} (\rightarrow \Xi_c^+ \gamma) K$

A popular J^P assignment: the narrow states are λ modes in the natural order $\frac{1}{2}^-, \frac{1}{2}^-, \frac{3}{2}^-, \frac{3}{2}^-, \frac{5}{2}^-$. [Karliner:2017kfm, Padmanath:2017lng, Wang:2017zjw]

\varOmega_c^{**0} states in prompt electoproduction [Belle:2017ext]

• four Ω_c^{**0} structures are observed in prompt

$$e^+e^- o \Omega_c^{**0} (o \Xi_c^+ K^-) X$$

 Ω_{b}^{**} states in prompt production [LHCb:2020tqd]

- $\sim 100x$ smaller statistics
- Four peaks are seen with significance $> 3\sigma$
- No fifth narrow state
- Do we see HQSS suppression for the first two?

 $\Omega_{b}(6315)^{-}$ $\Omega_{b}(6330)^{-}$ $\Omega_{b}(6340)^{-}$ $\Omega_{h}(6350)^{-}$ The first exclusive observation of Ω_c^{**0} [LHCb:2021ptx] In $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decay

- Strict exclusivity cut \Rightarrow No feed down!
- Same four peaks (no clear fifth)
- + the threshold structure (5.3σ)

The first exclusive observation of Ω_c^{**0} [LHCb:2021ptx] In $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decay

Angular analysis of $\Omega_b^- \to \Omega_c^{**0} (\to \Xi_c^+ K^-) \pi^-$ [LHCb:2021ptx]

- Ω_b^- , Ξ_c spin orientation are averaged
- Still spin sensitivity
 - Spin of Ω_b^- is 1/2
 - Ω_c^{**0} cannot have spin projection > 1/2
 - ⇒ non-trivial angular dependence for J = 3/2, J = 5/2.
 - No parity separation
- Noticeable inefficiency at $\cos \theta = 1$ (soft K^-).

3.6
$$\sigma$$
: $J(\Omega_c(3065)^0)! = 1/2$
2.2 σ : $J(\Omega_c(3050)^0)! = 1/2$

Combined spin test [LHCb:2021ptx]

Combined spin test [LHCb:2021ptx]

April 21st 2023
Combined spin test [LHCb:2021ptx]

The threshold structure [LHCb:2021ptx]

• Explained in the prompt analysis by the partially reconstructed $\Omega_c(3065)^+ \rightarrow \Xi_c^{\prime+} K^-$ with anomalously large coupling.

- Exclusive analysis: no feed down is possible
- Other non-physical sources are excluded
- Significance in the nominal fit is 5.3σ,
 4.3σ including systematics
- No model sensitivity due to the low statistics

Further investigation in needed!

Further Ω_c^{**0} states from prompt production [LHCb:2023rtu]

- Confirmation of 5-peak structure
- Prominent threshold enhancement
- Two new structures:
 - $\Omega_c(3185)^0$ with $\Gamma = 50 \pm 7^{+10}_{-20}$
 - $\Omega_c(3327)^0$ with $\Gamma = 20 \pm 5^{+13}_{-1}$
- Possibly 2S states [Karliner:2023okv]

Polarimetry

Weak decay of a fermion deflects reflects polarization Example: $\Lambda \rightarrow p\pi^-$

$$H_{\lambda_{\Lambda},\lambda_{P}} = \left\langle p, \lambda_{P}; \pi^{-} | T_{\text{weak}} | \Lambda, \lambda_{\Lambda}
ight
angle$$

$$\frac{2}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} = 1 + P \frac{\alpha}{\cos\theta}, \quad A_{FB} = \alpha P$$

- $P = |\vec{P}|$ polarization, for J = 1/2, there are just tree d.o.f.
- α is the asymmetry parameter:

Appears only when both PV and PC

$$\alpha = \frac{|H_+|^2 - |H_-|^2}{|H_+|^2 + |H_-|^2} = -\frac{2\operatorname{Re}(H_{\mathcal{S}}^* H_{\mathcal{P}})}{|H_{\mathcal{S}}|^2 + |H_{\mathcal{P}}|^2}$$

S-wave – parity violating (PV); P-wave – parity conserving (PC): $\Lambda (j^P = 1/2^+) \rightarrow p (j^P = 1/2^+) \pi^- (j^P = 0^-)$

Weak decay of a fermion deflects reflects polarization Example: $\Lambda \rightarrow p\pi^-$

$$H_{\lambda_{\Lambda},\lambda_{
ho}} = \left\langle oldsymbol{p},\lambda_{
ho};\pi^{-}|T_{ ext{weak}}|\Lambda,\lambda_{\Lambda}
ight
angle$$

$$\frac{2}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} = 1 + P \frac{\alpha}{\cos\theta}, \quad A_{FB} = \alpha P$$

- $P = |\vec{P}|$ polarization, for J = 1/2, there are just tree d.o.f.
- α is the asymmetry parameter: If we know α , we can measure P

Appears only when both PV and PC

$$\alpha = \frac{|H_+|^2 - |H_-|^2}{|H_+|^2 + |H_-|^2} = -\frac{2\text{Re}(H_S^* H_P)}{|H_S|^2 + |H_P|^2}$$

S-wave – parity violating (PV); P-wave – parity conserving (PC): $\Lambda (j^P = 1/2^+) \rightarrow p (j^P = 1/2^+) \pi^- (j^P = 0^-)$

Measuring polarization – polarimetry in τ decays

Tsai:1971vv, Kuhn:1991cc, Davier:1992nw, Kuhn:1995nn, Kuhn:1982di, Kuhn:1993ra, Hagiwara:1989fn]

Idea: similar relation for τ lepton decays,

$$rac{\Phi}{\Gamma} rac{\mathrm{d}\Gamma}{\mathrm{d}\Phi} \propto 1 + ec{P} \cdot ec{h} \, .$$

- \vec{P} is a polarization of τ
- \vec{h} is a **polarimeter vector**

Polarimeter vector of the τ lepton in the SM

- Direction depends on the final state, e.g.
 - for τ⁻ → π⁻ν_τ decay, *h* ↑↑ *p*_πfor τ⁻ → ℓν_τ ν_ℓ decay, *h* ↑↑ *p*_{ν_ℓ}
- Unit vector: $|\vec{h}| = 1$.

Measuring polarization – general multibody decays? \rightarrow Dalitz-Plot Decomposition (DPD)

Factorization of variables describing dynamics and polarization [JPAC:2019ufm]:

$$\mathcal{T}_{
u_0,\{\lambda\}}(\phi, heta,\chi; au) = \sum_{
u} \mathcal{D}^{1/2}_{
u_0,
u}(\phi, heta,\chi) \, \mathcal{A}_{
u,\{\lambda\}}(au)$$

Polarization d.o.f.

- Euler angles in active ZYZ convention
- rotation of the system as rigid body
- polarization affects angular distribution

Dynamic d.o.f.

- Mandelstam variables of the subsystems
- describes resonances in the decay

- For 3b decay: 2 degrees of freedom Dalitz-plot coordinates
- (m_{12}^2, m_{23}^2) fixes orientation of the momenta

Model-agnostic representation of the decay rate

Using the SU(2) \rightarrow SO(3) homomorphism, we get our polarized master formula,

$$|\mathcal{M}(\phi, \theta, \chi, \tau)|^2 = I_0(\tau) \left(1 + \sum_{i,j=1}^3 P_i R_{ij}(\phi, \theta, \chi) \alpha_j(\tau)\right),$$

where

- $I_0(\tau)$ is the unpolarized intensity
- $R(\phi, \theta, \chi) = R_Z(\phi)R_Y(\theta)R_Z(\chi)$ defines the decay plane orientation.
- $\alpha(\tau)$ is the aligned polarimeter vector field,

$$ec{lpha}(au) = \sum_{
u',
u,\{\lambda\}} A^*_{
u',\{\lambda\}} ec{\sigma}_{
u',
u} A_{
u,\{\lambda\}} / I_0(au) \,.$$

It is specific for the decay, does not depend on the production mechanism.

Model-agnostic representation of the decay rate

Using the SU(2) \rightarrow SO(3) homomorphism, we get our polarized master formula,

$$|\mathcal{M}(\phi,\theta,\chi,\tau)|^{2} = I_{0}(\tau) \left(1 + \sum_{i,j=1}^{3} \mathbf{P}_{i} \mathbf{R}_{ij}(\phi,\theta,\chi) \alpha_{j}(\tau)\right),$$

where

- $I_0(\tau)$ is the unpolarized intensity
- $R(\phi, \theta, \chi) = R_Z(\phi)R_Y(\theta)R_Z(\chi)$ defines the decay plane orientation.
- $\alpha(\tau)$ is the aligned polarimeter vector field,

This study Determining polarization
fines the end of the provide
$$I_0(\tau)$$
 and $\vec{\alpha}(\tau)$
end measure $|\mathcal{M}(\phi, \theta, \chi, \tau)|^2$
end of the provide \vec{P} from fit

$$ec{lpha}(au) = \sum_{
u',
u,\{\lambda\}} A^*_{
u',\{\lambda\}} ec{\sigma}_{
u',
u} A_{
u,\{\lambda\}} / I_0(au) \,.$$

It is specific for the decay, does not depend on the production mechanism.

Visualizing vector $\vec{\alpha}$

- $\vec{\alpha}$ is a vector with respect to the decay plane
- R_y is alignment rotation: who is *z*-axes (proton, kaon, or pion)
- numbering (p,π^+,K^-) vs (p,K^-,π^+) flips the plane

Aligned polarimeter vector field in Dalitz plot coordinates [LHCb:2023crj]

Misha Mikhasenko (ORIGINS)

1.75

- 0

-0.8

-0.6

-0.4

-0.2

0.0

5

 $\odot y$

Summary on the excitation pattern

1P multiplet of "bad" diquark – a fundamental piece of the baryon spectroscopy puzzle

- 7 states: five λ -modes and two ρ -modes
- In common for Ξ , $\Sigma_{b/c}$, $\Omega_{b/c}$, $\Xi_{b/c}$, Ξ_{cc}
- State splittings indicate spin-orbit and "hyperfine" interaction
- Charm (beauty) baryons are narrow good chance to resolve it:

Assign quantum numbers, reveal the light quark dynamics

Identify diquark excitation for the first time

Summary on the excitation pattern

1P multiplet of "bad" diquark – a fundamental piece of the baryon spectroscopy puzzle

- 7 states: five λ -modes and two ρ -modes
- In common for Ξ , $\Sigma_{b/c}$, $\Omega_{b/c}$, $\Xi_{b/c}$, Ξ_{cc}
- State splittings indicate spin-orbit and "hyperfine" interaction
- Charm (beauty) baryons are narrow good chance to resolve it:

Assign quantum numbers, reveal the light quark dynamics

Identify diquark excitation for the first time

The threshold structure

- Is a state? (a partner of D_s(2317)) Compact / Molecular component?
- Present at other sectors?

The fifth narrow state

- Why only seen in inclusive $\Xi_c^+ K^-$
- The first manifestation of the diquark excitation? 2*S* states?

Summary on the excitation pattern

1P multiplet of "bad" diquark – a fundamental piece of the baryon spectroscopy puzzle

- 7 states: five λ -modes and two ρ -modes
- In common for Ξ , $\Sigma_{b/c},~\Omega_{b/c},~\Xi_{b/c},~\Xi_{cc}$
- State splittings indicate spin-orbit and "hyperfine" interaction
- Charm (beauty) baryons are narrow good chance to resolve it:

Assign quantum numbers, reveal the light quark dynamics

Identify diquark excitation for the first time

The threshold structure

- Is a state? (a partner of D_s(2317)) Compact / Molecular component?
- Present at other sectors?

The fifth narrow state

- Why only seen in inclusive $\Xi_c^+ K^-$
- The first manifestation of the diquark excitation? 2*S* states?

Powerful angular analysis will help resolving spin structure.

Prospects to utilize the charm-baryon polarimetry fields

- Mechanism of quark hadronization [Brambilla:2010cs, Faccioli:2010kd, Butenschoen:2012px]
- BSM searches with $\Lambda_b^0 \rightarrow \Lambda_c^+ \ell^- \nu$ [Konig:1993wz, Dutta:2015ueb, Shivashankara:2015cta, Li:2016pdv, Li:2016pdv, Datta:2017aue, Ray:2018hrx, DiSalvo:2018ngq, Penalva:2019rgt, Ferrillo:2019owd] E.g. sign of longitudinal polarization of Λ_c^+ provides a test for left-handedness of $b \rightarrow c$ current
- BSM searches with measurement of EDM/MDM with charmed mesons [Baryshevsky:2016cul, Botella:2016ksl, Fomin:2017ltw]
- Hadron spectroscopy, extending decay chains

$$\begin{array}{l} \checkmark \quad \Lambda_b^0 \to J/\psi p K \text{ with } J/\psi \to \mu^+ \mu^- \\ \checkmark \quad \mathfrak{B} \to J/\psi \overline{p} \Lambda \text{ with } \Lambda \to p \pi^- \\ ? \quad \mathfrak{B}^+ \to \Lambda_c^+ \overline{\Lambda}_c^- K^+ \text{ with } \Lambda_c^+ \to p K^- \pi^+ \\ ? \quad \Omega_b^- \to \Xi_c^+ \pi^- K^- \text{ with } \Xi_c^+ \to p K^- \pi^+ \end{array}$$

- [LHCb:2020gnv] Aaij et al., "Observation of a New Excited D_s^+ Meson in $B^0 \rightarrow D^-D^+K^+\pi^-$ Decays," Phys. Rev. Lett., vol. 126, no. 12, p. 122002, 2021, 10.1103/PhysRevLett.126.122002.
- [LHCb:2018haf] Aaij *et al.*, "Observation of Two Resonances in the $\Lambda_b^0 \pi^{\pm}$ Systems and Precise Measurement of Σ_b^{\pm} and $\Sigma_b^{*\pm}$ properties," *Phys. Rev. Lett.*, vol. 122, no. 1, p. 012001, 2019, 10.1103/PhysRevLett.122.012001.
- [Belle:2017jrt] Li *et al.*, "Observation of $\exists_c (2930)^0$ and updated measurement of $B^- \to K^- \Lambda_c^+ \bar{\Lambda}_c^-$ at Belle," *Eur. Phys. J. C*, vol. 78, no. 3, p. 252, 2018, 10.1140/epic/s10052-018-5720-5.

[LHCb:2022vns] "Study of the $B^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^- K^-$ decay," 11 2022.

- [Karliner:2017kfm] Karliner and Rosner, "Very narrow excited Ω_c baryons," *Phys. Rev. D*, vol. 95, no. 11, p. 114012, 2017, 10.1103/PhysRevD.95.114012.
- [Padmanath:2017Ing] Padmanath and Mathur, "Quantum Numbers of Recently Discovered Ω⁰_c Baryons from Lattice QCD," *Phys. Rev. Lett.*, vol. 119, no. 4, p. 042001, 2017, 10.1103/PhysRevLett.119.042001.
- [LHCb:2017uwr] Aaij et al., "Observation of five new narrow Ω⁰_c states decaying to Ξ⁺_cK[−]," Phys. Rev. Lett., vol. 118, no. 18, p. 182001, 2017, 10.1103/PhysRevLett.118.182001.
- [Belle:2017ext] Yelton et al., "Observation of Excited Ω_c Charmed Baryons in e⁺e⁻ Collisions," Phys. Rev. D, vol. 97, no. 5, p. 051102, 2018, 10.1103/PhysRevD.97.051102.

- [LHCb:2020tqd] Aaij *et al.*, "First observation of excited Ω_b^- states," *Phys. Rev. Lett.*, vol. 124, no. 8, p. 082002, 2020, 10.1103/PhysRevLett.124.082002.
- [LHCb:2021ptx] Aaij *et al.*, "Observation of excited Ω_c^0 baryons in $\Omega_b^- \rightarrow \Xi_c^+ K^- \pi^- decays$," *Phys. Rev. D*, vol. 104, no. 9, p. L091102, 2021, 10.1103/PhysRevD.104.L091102.
- [Karliner:2023okv] Karliner and Rosner, "Excited Ω_c baryons as 2S states," 4 2023.
- [LHCb:2023rtu] "Observation of new Ω_c^0 states decaying to the $\Xi_c^+ K^-$ final state," 2 2023.
- [Tsai:1971vv] Tsai, "Decay correlations of heavy leptons in $e^+e^- \rightarrow \ell^+\ell^-$," *Phys. Rev. D*, vol. 4, no. 9, pp. 2821–2837, Nov. 1971, 10.1103/PhysRevD.4.2821.
- [Kuhn:1991cc] Kühn and Mirkes, "Angular distributions in semileptonic τ decays," *Phys. Lett. B*, vol. 286, no. 3, pp. 381–386, Jul. 1992, 10.1016/0370-2693(92)91791-7.
- [Davier:1992nw] Davier et al., "The optimal method for the measurement of tau polarization," *Phys. Lett. B*, vol. 306, no. 3-4, pp. 411–417, Jun. 1993, 10.1016/0370-2693(93)90101-M.
- [Kuhn:1995nn] Kühn, "τ polarimetry with multimeson states," Phys. Rev. D, vol. 52, no. 5, pp. 3128–3129, Sep. 1995, 10.1103/PhysRevD.52.3128.
- [Kuhn:1982di] Kühn and Wagner, "Semileptonic decays of the τ lepton," Nucl. Phys. B, vol. 236, no. 1, pp. 16–34, Apr. 1984, 10.1016/0550-3213(84)90522-4.

[Kuhn:1993ra] Kühn, "Tau kinematics from impact parameters," *Phys. Lett. B*, vol. 313, no. 3, pp. 458–460, Sep. 1993, 10.1016/0370-2693(93)90019-E.

Misha Mikhasenko (ORIGINS)

Puzzles of Heavy Baryons

April 21st 2023

- [Hagiwara:1989fn] Hagiwara et al., "τ polarization measurements at LEP and SLC," Phys. Lett. B, vol. 235, no. 1, pp. 198–202, Jan. 1990, 10.1016/0370-2693(90)90120-U.
- [JPAC:2019ufm] Mikhasenko et al., "Dalitz-plot decomposition for three-body decays," Phys. Rev. D, vol. 101, no. 3, p. 034033, Feb. 2020, 10.1103/PhysRevD.101.034033.

[LHCb:2023crj] " Λ_c^+ polarimetry using the dominant hadronic mode," 1 2023.

- [Brambilla:2010cs] Brambilla et al., "Heavy Quarkonium: Progress, Puzzles, and Opportunities," *Eur. Phys. J. C*, vol. 71, p. 1534, 2011, 10.1140/epjc/s10052-010-1534-9.
- [Faccioli:2010kd] Faccioli et al., "Towards the experimental clarification of quarkonium polarization," Eur. Phys. J. C, vol. 69, no. 3, pp. 657–673, Oct. 2010, 10.1140/epjc/s10052-010-1420-5.
- [Butenschoen:2012px] Butenschoen and Kniehl, " J/ψ polarization at the Tevatron and the LHC: Nonrelativistic-QCD Factorization at the Crossroads," *Phys. Rev. Lett.*, vol. 108, no. 17, p. 172002, Apr. 2012, 10.1103/PhysRevLett.108.172002.
- [Konig:1993wz] Konig et al., "Determination of the b → c handedness using nonleptonic A_c decays," Phys. Rev. D, vol. 49, no. 5, pp. 2363–2368, Mar. 1994, 10.1103/PhysRevD.49.2363.
- [Dutta:2015ue] Dutta, " $\Lambda_b \rightarrow (\Lambda_c, p)\tau\nu$ decays within standard model and beyond," *Phys. Rev. D*, vol. 93, no. 5, p. 054003, Mar. 2016, 10.1103/PhysRevD.93.054003.
- [Shivashankara:2015cta] Shivashankara *et al.*, " $\Lambda_b \rightarrow \Lambda_c \tau \bar{\nu}_{\tau}$ decay in the standard model and with new physics," *Phys. Rev. D*, vol. 91, no. 11, p. 115003, Jun. 2015, 10.1103/PhysRevD.91.115003.

- [Li:2016pdv] Li et al., " $\Lambda_c \rightarrow \Lambda_c \tau \bar{\nu}_{\tau}$ decay in scalar and vector leptoquark scenarios," JHEP, vol. 02, p. 068, Feb. 2017, 10.1007/JHEP02(2017)068.
- $\begin{array}{l} \mbox{[Datta:2017aue]} & \mbox{Datta et al., "Phenomenology of } \Lambda_b \rightarrow \Lambda_c \tau \bar{\nu}_\tau \mbox{ using lattice QCD calculations," } JHEP, vol. 2017, no. 8, p. 131, Aug. 2017, 10.1007/JHEP08(2017)131. \end{array}$
- [Ray:2018hrx] Ray et al., "Probing new physics in semileptonic A_b decays," Phys. Rev. D, vol. 99, no. 1, p. 015015, Jan. 2019, 10.1103/PhysRevD.99,015015.

- [Baryshevsky:2016cul] Baryshevsky, "The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals," *Phys. Lett. B*, vol. 757, pp. 426–429, 2016, 10.1016/j.jphysletb.2016.04.025.
- [Botella:2016ks] Botella et al., "On the search for the electric dipole moment of strange and charm baryons at LHC," Eur. Phys. J. C, vol. 77, no. 3, p. 181, 2017, 10.1140/epic/s10052-017-4679-y.
- [Fomin:2017tw] Fomin et al., "Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals," JHEP, vol. 08, p. 120, 2017, 10.1007/JHEP08(2017)120.

April 21st 2023

Appendix

Spin hypotheses testing

LHCb:2021ptx

• 2d Log Likelihood ratio as a test statistics $t_{J|J'} = \frac{1}{N} \sum_{i=1}^{N} \log (I_J(\cos \theta_i) / I'_J(\cos \theta_i))$ $\Omega_c(3050)^0 \qquad \qquad \Omega_c(3065)^0$

30 / 30

Optional simplification: averaging over dynamic variables

Can the dynamic variables au be integrated over, i.e disregarded in the analysis?

$$\frac{8\pi}{\Gamma} \frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\phi\,\mathrm{d}\cos\theta\,\mathrm{d}\chi} = 1 + \sum_{i,j=1}^{3} P_{i}R_{ij}(\phi,\theta,\chi)\overline{\alpha}_{j}\,,$$

where $\vec{\alpha}$ is averaged aligned polarimeter vector.

Advantage / Disadvantage

 $\,+\,$ Only need know three numbers in order to determine polarization.

- Uncertainty on \vec{P} with averaged $\vec{\alpha}$ is worse than with the full $\vec{\alpha}(\tau)$ field. [Davier:1992nw]

Understanding the polarimeter vector $(1 + 1)^{-1}$

Example: $\Lambda_c^+ \rightarrow \Lambda(1520) \left(\rightarrow p K^- \right) \pi^+$

 $\vec{\alpha}$ of individual contributions points in z-direction when the resonance is aligned with z

Polarization sensitivity by Davier et al.

Determination of polarization is a linear problem

 $I_0(\xi|P) = f(\xi) + Pg(\xi)$, where ξ are kinematic variables.

For the likelihood fit of the set $\{\xi_i\}_N$, the error to P can be computed analytically:

$$P = P_{
m mod} \pm \delta_P, \quad \delta_P = rac{1}{S_P \sqrt{N}}, ext{ where } S_P^2 = \int rac{g^2}{f+Pg} d^n \xi$$

Using the relations with our master formula

$$S_0 = 3 \int I_0 \left| \vec{\alpha} \right|^2 \mathrm{d}^n \tau \, / \, \int I_0 \, \mathrm{d}^n \tau$$

- For integrated setup, $\overline{S}_0^2 = 3(\overline{\alpha}_x^2 + \overline{\alpha}_y^2 + \overline{\alpha}_z^2)$
- The ratio S_0/\overline{S}_0 gives the expected increase of the statistical uncertainty

Workflow and an input from amplitude analysis

- Implement $\Lambda_c^+ \to \rho K^- \pi^+$ models from [LHCb-PAPER-2022-002] with DPD
- Compute $\vec{\alpha}$ for every point of the $pK^-\pi^+$ Dalitz plot
- Propagate uncertainties of the angular analysis

[LHCb-PAPER-2022-002] provides:

- a default amplitude model
- several alternative models with different dynamics parametrizations
- parameter values with error bars for each model

Present project implemented:

- default model and alternative models formulated with DPD [JPAC:2019ufm]
- helicity couplings have been remapped
- guaranteed identical dynamics lineshapes

Implementation

Cross-check in two programming languages

This analysis has been performed in two languages:

Both implementations have been carefully documented on an interactive webpage
Next slides

A new technique: symbolic amplitude models N $(\Gamma_{(m)}, \sqrt{(-(m_1-m_2)^2)(s-(m_1+m_2)^2)}(s-(m_1-m_2)^2)(s-(m_1+m_2)^2)\sqrt{m_n^2}$

- The Python implementation follows a new workflow that is facilitated by packages from the ComPWA Project (compwa-org.rtfd.io):
 - Formulate amplitude model symbolically with a Computer Algebra System
 - Use that symbolic expression as template to a computational back-end, such as a differentiable programming framework
- We selected **JAX** as the fastest back-end

 $a_{2}^{2}(s-(m_{1}-m_{2})^{2})(s-(m_{1}+m_{2}))$

 $m_0^2 - s$

A new technique: symbolic amplitude models

Advantages of this workflow:

- Computational implementation is outsourced to fast, or optimized back-ends from the Machine Learning and data science community
- Out-of-the-box GPU and multi-threading support
- Very easy to implement other parametrizations without having to worry about performance
- CAS simplifications result in performance boosts
- Symbolic amplitude models result in a self-documenting workflow

Works especially well for large computational models

 $\frac{1}{q_0^2(s-(m_1-m_2)^2)(s-(m_1+m_2))}$

 $m_0^2 - s$

രണ

Living documentation

Maintaining reproducible and understandable analysiseresults

Self-documenting workflow Search the docs ... Our analysis results are 1. Nominal amplitude model automatically rendered as staticek with LHCb data webpages from Jupyter and^{3. Intensity distribution} Pluto notebooks: lc2pkpi-polarimetry.docs.cern.ch (CERN SSO until on arXiv) 7.2. DPD angles The Python and Julia 7.5. Benchmarking

dependencies are pinned, so that atom the analysis is **fully** reproducible in around 2 hours mination of polarization

6. Average polarimeter per resonance ^ 7.1. Dynamics lineshapes 7.3. Phase space sample 7.4 Alignment consistency 7.7 Amplitude model with LS. couplings 7.8 SU(2) → SO(3) homomorphism 8. Bibliography

0.1 amplitude

9.2. lhcb

Polarimetry $\Lambda_{c} \rightarrow p K \pi$

The full intensity of the amplitude model is obtained by summing the following aligned amplitude over all helicity values λ_i in the initial state 0 and final states 1, 2, 3:

Show code cell source

4 D O ±

I≡ Contents

1.1. Resonances and LSscheme

1.2. Amplitude

1.2.1. Spin-alignment amplitude

1.2.2 Sub-system amplitudes

1.3 Parameter definitions

1.3.1. Helicity coupling values

1.3.2. Non-coupling parameters

 $\sum_{j=1/2}^{1/2} \sum_{\lambda'_1=-1/2}^{1/2} A^{1}_{\lambda'_0,\lambda'_1} d^{\frac{1}{2}}_{\lambda'_1,\lambda_1} \left(\zeta^{1}_{1(1)}\right) d^{\frac{1}{2}}_{\lambda_0,\lambda'_0} \left(\zeta^{0}_{1(1)}\right) + A^{2}_{\lambda'_0,\lambda'_1} d^{\frac{1}{2}}_{\lambda'_1,\lambda_1} \left(\zeta^{1}_{2(1)}\right) d^{\frac{1}{2}}_{\lambda_0,\lambda'_0} \left(\zeta^{0}_{2(1)}\right) + A^{3}_{\lambda'_0}$

Note that we simplified notation here: the amplitude indices for the spinless states are not rendered and their corresponding Wigner-d alignment functions are simply 1.

Generated by the CAS The relevant $\zeta_{i(k)}^{i}$ angles are defined as: Show code cell source _ 0 _

^

×

April 21st 2023

Cross-checks

Visual comparison of the default amplitude model of [LHCb-PAPER-2022-002]

Cross-checks

Numerical test using code from LHCb-PAPER-2022-002

- Comparison for a single point in phase space
 - resonance lineshapes,
 - helicity amplitude per resonance
- Absolute differences at most 0.01%.

Q Search the docs	≡			4 🖸 O	Contents
		Computed	Expected	Difference	Lineshape comparison Amplitude comparison
Default amplitude model	ArD(1232)1	$\mathcal{H}_{D(1232)}^{\mathrm{production}} = 0$			SymPy expressions
Cross-check with LHCb data		D(1000), 2,0			Numerical functions
Intensity distribution	A++	-0.488498+0.517710j	-0.488498+0.517710j	3.11e-14	Input data
Polarimeter vector field	A+-	0.894898-0.948412j	0.894898-0.948412j	7.61e-15	Comparison table
Uncertainties	A-+	0.121490-0.128755j	0.121490-0.128755j	1.80e-14	
Appendix ^	A	-0.222563+0.235872j	-0.222563+0.235872j	6.14e-15	
Dynamics lineshapes DPD angles	ArD(1232)2	$\mathcal{H}^{\mathrm{production}}_{D(1232),rac{1}{2},0}$			
Phase space sample	A++	-0.222563+0.235872j	-0.222563+0.235872j	6.14e-15	
Alignment consistency	A+-	-0.121490+0.128755j	-0.121490+0.128755j	1.80e-14	
Serialization	A-+	-0.894898+0.948412j	-0.894898+0.948412j	7.61e-15	
Misha Mikhasenko (ORIGIN	S)	Puzzles of Heav	vy Baryons		April 21 st 2023

30 / 30

Propagation of uncertainties

Uncertainties over the polarimeter field have two components:

Statistical + **Systematic**:

- parameter resampling of the default model using parameter error bars
- parameter error bars include both stat. and syst. uncertainties. added in quadrature
- take RMS over the resulting parameter-resampled distributions

Ø Model:

- determined from all alternative models
- only central values of alternative models are considered
- take min-max of the extrema

Parameter	Central Value	Stat. Unc.	Model Unc.	Syst. Unc.		
$\text{Re}\mathcal{H}_{1/2,0}^{A(1405)}$	-4.6	0.5	3.3	0.1		
$\text{Im}\mathcal{H}_{1/2,0}^{A(1405)}$	3.2	0.5	3.2	0.1		
$\operatorname{Re}\mathcal{H}_{-1/2.0}^{\tilde{A}(1405)}$	10	1	12	0		
${ m Im} {\cal H}^{A(1405)}_{-1/2,0}$	2.8	1.1	3.7	0.3		
$\text{Re}\mathcal{H}_{1/2,0}^{A(1520)}$	0.29	0.0 <mark>5</mark>	0.12	0.01		
$\mathrm{Im}\mathcal{H}_{1/2,0}^{A(1520)}$	0.04	0.0 <mark>5</mark>	0.12	0.02		
$\text{Re}\mathcal{H}_{-1/2,0}^{A(1520)}$	-0.16	0.14	0.69	0.03		
$\text{Im} \mathcal{H}_{-1/2,0}^{A(1520)}$	1.5	0.1	1.3	0.0		
$m^{A(1520)}$ [MeV]	1518.47	0.3 <mark>6</mark>	0.65	0.03		
$\Gamma^{A(1520)}$ [MeV]	15.2	0.8	1.3	0.1		
$\text{Re}\mathcal{H}_{1/2,0}^{A(1600)}$	4.8	0.5	5.0	0.1		
$\text{Im}\mathcal{H}_{1/2,0}^{A(1600)}$	3.1	0.5	3.7	0.1		
$\text{Re}\mathcal{H}_{-1/2,0}^{A(1600)}$	-7.0	0.5	8.7	0.1		
$\text{Im} \mathcal{H}_{-1/2,0}^{A(1600)}$	0.8	0.6	2.0	0.2		
$\text{Re}\mathcal{H}_{1/2,0}^{\Lambda(1670)}$	-0.34	0.0 <mark>5</mark>	0.35	0.01		
$\text{Im}\mathcal{H}_{1/2,0}^{\dot{A}(1670)}$	-0.14	0.0 <mark>5</mark>	0.22	0.02		
$\operatorname{Re}\mathcal{H}_{-1/2,0}^{\overline{A(1670)}}$	-0.57	0.10	0.46	0.02		
$\text{Im}\mathcal{H}_{-1/2,0}^{\Lambda(1670)}$	1.0	0.1	1.2	0.0		
$\operatorname{Re}\mathcal{H}_{1/2,0}^{A(1690)}$	-0.39	0.1 <mark>0</mark>	0.23	0.02		
arvons		April 21 st 2023				

[LHCb-PAPER-2022-002, p. 19]

Table 8: Default amplitude model measured fit parameters describing the A contributions.

30 / 30

Propagated uncertainties on the polarimeter field

We compute $\vec{\alpha}^{(i)}(\tau)$ over a phase space sample, with *i* one of the parameter resamplings or one of the alterative amplitude models.

Misha Mikhasenko (ORIGINS)

Puzzles of Heavy Baryons

April 21st 2023

30 / 30
Averaged polarimeter vector

Defining the averaged polarimeter vector as $\overline{\alpha}_j = \int I_0 \alpha_j d^n \tau / \int I_0 d^n \tau$, we get:

$$\begin{array}{lll} \overline{\alpha_{\rm x}} & = & \left(-62.6 \pm 4.5^{+8.4}_{-14.8}\right) \times 10^{-3} \,, \\ \overline{\alpha_{\rm y}} & = & \left(+8.9 \pm 8.9^{+9.1}_{-12.7}\right) \times 10^{-3} \,, & ({\rm due \ to \ interference}) \\ \overline{\alpha_{z}} & = & \left(-278.0 \pm 23.7^{+12.6}_{-40.4}\right) \times 10^{-3} \,, \\ \overline{|\alpha|} & = & \left(669.4 \pm 9.3^{+15.3}_{-10.4}\right) \times 10^{-3} \,. & (\approx |\overline{\alpha}| \times 2.35) \end{array}$$

First uncertainty is stat.&syst (std.), second is model (extrema of alternative models).

Averaged polarimeter vector

Defining the averaged polarimeter vector as $\overline{\alpha}_j = \int I_0 \alpha_j d^n \tau / \int I_0 d^n \tau$, we get:

$$\begin{array}{lll} \overline{\alpha_{\mathrm{x}}} & = & \left(-62.6 \pm 4.5^{+8.4}_{-14.8}\right) \times 10^{-3} \,, \\ \overline{\alpha_{\mathrm{y}}} & = & \left(+8.9 \pm 8.9^{+9.1}_{-12.7}\right) \times 10^{-3} \,, & (\text{due to interference}) \\ \overline{\alpha_{z}} & = & \left(-278.0 \pm 23.7^{+12.6}_{-40.4}\right) \times 10^{-3} \,, \\ \overline{|\alpha|} & = & \left(669.4 \pm 9.3^{+15.3}_{-10.4}\right) \times 10^{-3} \,. & (\approx |\overline{\alpha}| \times 2.35) \end{array}$$

First uncertainty is stat.&syst (std.), second is model (extrema of alternative models).

Spherical coordinates (less correlated resampling uncertainty):

$$\begin{aligned} |\overline{\alpha}| &= \left(+285.1 \pm 24.0^{+37.9}_{-13.8} \right) \times 10^{-3} \,, \\ \theta\left(\overline{\alpha}\right) &= \left(+0.929 \pm 0.002^{+0.017}_{-0.011} \right) \times \pi \,, \quad \text{(small error!)} \\ \phi\left(\overline{\alpha}\right) &= \left(+0.955 \pm 0.045^{+0.067}_{-0.028} \right) \times \pi \,. \end{aligned}$$

Misha Mikhasenko (ORIGINS)

Results availability

Justification of the 100×100 grid

Numeric

- $ec{lpha}(au)$ and $\emph{I}_0(au)$ available in grid form:
- For propagating uncertainties:
 - grids for default model, all alternative models, and resampled
- Grid size in $\delta m_{pK} \sim \Gamma_{\Lambda(1520)}$
- Toy fits of P with grids of 100×100, 200×200, 500×500 ⇒ negligible extra uncertainty

lc2pkpi-polarimetry.docs.cern.ch

averaged-polarimeter-vectors.json (33.7 kB)

Delarimetry-field.json (67.9 MB)

(a) polarimetry-field.tar.gz (26.2 MB) Misha Mikhasenko (ORIGINS)

Symbolic

The symbolic model is easy picklable:

import pickle
import jax.numpy as jnp

COMPWA
from tensorwaves.function.sympy import create_function

```
# load model
model_description = pickle.load("Lc2pKpi-sympy-default-model.pkl")
```

```
# substitute parameters
sympy_model = (model_description["intensity_expr"]
    .xreplace(model_description["parameter_defaults"]))
```

```
# compile < 1s
density = create_function(sympy_model, backend="jax")</pre>
```

```
# call
density({"sigma1": jnp.array([1.0, 1.1]), "sigma2": jnp.array([3.0, 3.2])})
```