Charmonium Photo-production

Adam Szczepaniak (IU/JLab)

- It's new: no XYZ state has been uncontroversially seen so far. Scarce consistency between various production mechanisms
- Potentially free from re-scattering effects that could mimic resonances in multi-body decays (e.g. triangles)
- The framework is (relatively) clean from a theory point of view
- The local probe (photon) offers another way of exploring nature of the states

Jefferson Lab

INDIANA UNIVERSITY

- Several workshops over the past 18months to explore opportunities for XYZP physics with photon/electron beams.
- This talk: expectations, simulation results and some recent results

Happy 10y anniversary JPAC'ers

Misha

Cesar

Daniel

Viktor

Sergi

Jorge

Kevin

Alessandro

Astrid

Vincent

Wyatt

Gloria

Lukasz

Adam

Sebastian

Miguel

Πſ

Andrew

Emilie

Robert

Amplitude analysis: let the data decide the physics

Physical interpretation: complex planes

Jefferson Lab INDIANA UNIVERSITY

What are the Z's?

Are the Z's true resonances or kinematic effects

Need for complete amplitude analysis

Holy Grail: Al as a tool for physics discovery

Jefferson Lab

INDIANA UNIVERSITY

"Deep Learning of Exotic Hadrons" L.Ng. (JPAC) Phys.Rev.D 105 (2022) 9, L091501

Neural networks as classifiers

Neural networks as classifiers

Neural networks as classifiers

Explainability

AI/ML in spectroscopy

Simple remarks about cross sections

 $\sigma_{a+b\to c+b} \sim \pi R_{eff}^2$

- XYZ production cross section ~ 1 mb
- XYZ detection = production x branching ratio

16

courtesy of M.Shepherd

M. Albaladejo et al. [JPAC], PRD (2020) D.Winney et al. (JPAC) .

TABLE II. Summary of results for production of some states of interest at the EIC electron and proton beam momentum $5 \times 100(GeV/c)$ (for electron x proton). Columns show : the meson name; our estimate of the total cross section; production rate per day, assuming a luminosity of 6.1×10^{33} cm⁻²s⁻¹; the decay branch to a particular measurable final state; its ratio; the rate per day of the meson decaying to the given final state.

Meson	Cross Section (nb)	Production rate (per day)	Decay Branch	Branch Ratio (%)	Events (per day)
$\chi_{c1}(3872)$	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	5	6.1 k
Y(4260)	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	1	1.2 k
$Z_c(3900)$	0.3	0.26 M	$J/\Psi \pi^+$	10	1.6 k
X(6900)	0.015	0.013 M	$J/\Psi J/\Psi$	100	46
$Z_{cs}(4000)$	0.23	0.20 M	$J/\Psi K^+$	10	1.2 k
$Z_b(10610)$	0.04	0.034 M	$\Upsilon(2S) \pi^+$	3.6	24

C++ code available online (D. Winney)

Implementation in simulation with El-Spectro (D. Glazier)

- Couplings from data as much as possible, not relying on the nature of XYZ
- The model is expected to hold in the highest x- bin
- Model underestimates lower bins, conservative estimates

Jefferson Lab

0.9

 $\overline{\gamma p} \rightarrow b_1^+ X$

b₁(1235)⁴

0.8

da/dx [µb]

• ω and ρ exchanges give main contributions:

 Diffractive production, dominated by Pomeron (2-gluon) exchange. Benefits from higher energies at the EIC

• Focus $Z_c(3900) \rightarrow J/\psi \pi$, $Z_b(10610) \rightarrow \Upsilon(nS)\pi$, pion is exchange

Production at EIC

Artoisenet, Braaten, PRD83(2011)014019; FKG, Meißner, W. Wang, Z. Yang, EPJC74(2014)3063

$\sigma(pp/\bar{p}\rightarrow X)$	[nb]Exp.	$\Lambda = 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$
Tevatron	37-115	7(5)	29 (20)
LHC-7	13-39	13(4)	55(15)

Albaladejo, FKG, Hanhart et al., CPC41(2017)121001

 Order-of-magnitude estimates of the semi-inclusive electro-production of hidden/doublecharm hadronic molecules (in units of pb)

	Constituents	$I, J^{P(C)}$	EicC	EIC
X(3872)	$D\bar{D}^*$	0,1++	21(89)	216(904)
Z _c (3900) ⁰	$Dar{D}^*$	1, 1+-	0.4×10 ³ (1.3×10 ³)	3.8×10 ³ (14×10 ³)
Z_{cs}^{-}	$D^{*0}D_s^-$	1/2, 1+	19(69)	250(900)
<i>P_c</i> (4312)	$\Sigma_c \bar{D}$	1/2,1/2-	0.8(4.1)	15(73)
<i>P_{cs}</i> (4338)	$\Xi_c\overline{D}$	0,1/2-	0.1(1.6)	1.8 (30)
Predicted	$\Lambda_c\overline{\Lambda}_c$	0,0^+	0.3 (3.0)	10 (110)
Predicted	$\Lambda_c \overline{\Sigma}_c$	1,0-	0.01 (0.12)	0.5 (5.5)
<i>T</i> ⁺ _{<i>cc</i>}	DD^*	0,1+	0.3×10 ⁻³ (1.2×10 ⁻³)	0.1 (0.5)

F-K Guo @ EIC Workshop

XYZP phot-electro/production (reviews)

J/ψ photoproduction near threshold

- Heavy vector quarkonium near threshold possibly relevant for extracting unexplored nucleon properties (mass radius, gravitational form factors, etc.)
- Signal channel also contains hidden-charm pentaquark candidates seen at LHCb.
- Abundance of new data coming from Jefferson Lab on energy and angular dependence of x-section.

J/*ψ*-007 [Nature 615 (2023) 7954, 813-816]

J/ψ near threshold

• VMD (is a specific production model)

• In general

 $T_{\gamma p \to \psi p} \propto (8\pi E_{th}) r_{\gamma p \psi p} (1 - ia_S k_f + O(k_f^2))$

Range of $c\bar{c}$ photo-production

x-section @ threshold determines $r_{\gamma p \psi p}$ while energy dependents gives a_S

J/ψ photoproduction near threshold

Fit energy and mom-transfer using s-channel partial waves

$$T_{\gamma p \to \psi p}(s, \theta) = \sum_{l=0}^{l_{max}} (2l+1)T_l(s)P_l(\theta)$$

• Since $T_l(s) \sim (k_i k_f R^2)^l$ convergences requires $(k_i k_f R^2) < 1$ $k_f k_i R^2 \le 1$ for $E_{\nu} \sim 20 GeV$ We find

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \left(\frac{k_f}{k_i}\right) |T_{\gamma p \to \psi p}(s,\theta)|^2$$

- Determine $r_{\gamma p \psi p}$ and a_S from normalization and energy dependence
 - Generalizations :
 - Coupled channels $\bar{D}^{0(*)}\Lambda_{c}^{+}$ Du et al [Eur. Phys. J. C 80 (2020) 1053]
 - Extension of effective Range $K_l(s) = k_f^{2l}(a + bk_f^2 + \cdots)$
- - Statistical analysis

Fit results/conclusions

 Angular dependence saturated by the lowest partial waves

$$l_{max} \leq 3$$

 The expected hierarchy of partial waves S>P>D>F with the flattening at larger-t accounted for by p.w interferences

FIG. 2: Fit results for the differential cross section compared to GlueX data from [37]. The bands correspond to the 1σ uncertainties from the bootstrap analysis.

Fit results/conclusions

FIG. 1: Fit results for the integrated cross section compared to GlueX data from [37]. Bands correspond to 1σ uncertainties from bootstrap analysis.

- Elastic $\psi p \rightarrow \psi p$ scattering length $a_S \sim O(0.1 fm)$ found incompatible with VMD expectations (albeit with large errors)
- Inclusion of open charm reduces the discrepancy

INDIANA UNIVERSITY

- Fits also suggests relevance of open charm production and not incompatible with pentaquark production Du et al [Eur. Phys. J. C 80 (2020) 1053]
- Need more precise data, including open charm production

Comments/comparison with popular wisdom

- VMD, GPD, Brodsky at al. : proton is spectator while $c\bar{c}$ is produced only $-> \sigma \sim a_{\psi p}^2$ • $\sigma \sim |n(1 - ia_{\psi p}q + O(q^2))|^2$
- In the residual of ψp , $c\bar{c}$ propagates freely and weakly interacted with the target -> $G_{\alpha_1\alpha_2}D^{\alpha_3}\cdots DG_{\alpha_{n-1},\alpha_n}$

- threshold determines s-channel (in dual models pentaquark proaction is tiny)
- Twist = Dimension Spin (t-channel) $G_{\mu\alpha}G^{\alpha\nu}$ e.g. 4-2 = 2 PDF's : fixed twist, all spins = all partial waves (moments of pfd's are essentially tchannel partial waves)
 - For $c\bar{c}$ production it often assumed (?) spin ≤ 2 Analytical in s (no physics of open charm)