Strangeness in Neutron Stars Constraining the Hyperon Nucleon Interaction

Nicholas Zachariou

(CLAS collaboration)

UNIVERSITY Of Mork

The Nucleon-Nucleon interaction

- Gain insights into the structure of atomic nuclei
- Understand the properties of nuclear matter
- Understand the strong interaction (QCD) and how quarks and gluons interact in nuclear matter
- ``Easy" to conduct experiments with nucleon beams/targets
- Plethora of experimental data
- Fundamental interactions well understood

The Baryon-Baryon interaction

What happens when we replace one of the quarks in the nucleon with a strange quark?

Why study the Hyperon Nucleon Interaction?

The understanding of both nucleon-nucleon and Hyperon-nucleon potential is necessary in order to have a comprehensive picture of the strong interaction

- Understand composition of neutron stars
- Understand hypernuclear structure and hyperon matter
- Extend NN to a more unified picture of the baryon-baryon interaction

 $n_{\rm B} \,[{\rm fm}^{-3}]$ $n_{\rm B} \,[{\rm fm}^{-3}]$

The Hyperon Puzzle

- Hyperons are expected to appear in the core of NS at ρ ~ 2 3 ρ_0
- Hyperons soften the EoS → Reduction on maximum NS mass
- Observation of NS with M_{ns}>2M_s is incompatible with such soft EoS → Hyperon Puzzle

Hyperon Puzzle: Possible solutions

- YY and YN forces
- YNN and YYN three body forces

D. Lonardoni, Phys. Rev. Lett. 114, 092301 (2015)
J. Haidenbauer et al., Eur. Phys. J. A 53, 121 (2017)
I. Vidana, Proc. R. Soc. A 474, 20180145 (2018)

Current Challenges

Difficulties performing highprecision scattering experiments with short-lived beams

What is available?

Best way to obtain information is through $YN \rightarrow YN$

Total of <1300 observed $\Lambda p \rightarrow \Lambda p$ in 60 years

Λ source	Detector	p_{Λ}	$N_{\Lambda p \to \Lambda p}$
$\pi^- p \to \Lambda K^0$	LH ₂ BC	0.5-1.0	4
$\pi^- p \to \Lambda K^0$	$LH_2 BC$	0.4–1.0	14
$K^-N \to \Lambda \pi$	Propane BC	0.3–1.5	26
$K^-N \to \Lambda \pi$	Freon BC	0.5-1.2	86
$K^-A \to \Lambda X$	Heavy Liquid BC	0.15-0.4	11
$K^- p \to \Lambda X$	$LH_2 BC$	0.12-0.4	75
$nA \to \Lambda X$	Propane BC	0.9–4.7	12
$K^- p \to \Lambda X$	$LH_2 BC$	1.0 - 5.0	68
$K^-p \to \Lambda X$	$LH_2 BC$	0.1–0.3	378
$K^-p \to \Lambda X$	$LH_2 BC$	0.1–0.3	224
K^- Pt $\rightarrow \Lambda X$	$LH_2 BC$	0.3–1.5	175
p Pt $\rightarrow \Lambda X$	$LH_2 BC$	1.0 - 17.0	109
$pCu \rightarrow \Lambda X$	LH ₂ BC	0.5-24.0	71

How do we address these challenges?

Recent advancements in Accelerator and Detector technologies allow complementary approaches to studying the hyperonnucleon interaction via

- Hypernuclear physics
- Femptoscopy in high energy collisions
- Two-step processes and Final State Interaction

Hypernuclear Physics

Hypernuclear studies have uncertainties associated with medium modification as well as many-body effect

Femptoscopy Technique

Slide from ALICE Collab. - Sarti Valentina Mantovani

Final State Interactions and Two-Step Processes

- Two-step process where Hyperon rescatters with secondary nucleon
- Kaon identification allows tagging of hyperon beam
- 4π detector allows full reconstruction of the event
- Hydrogen and deuterium targets

Final State Interactions and Two-Step Processes

- Two-step process where Hyperon rescatters with secondary nucleon
- Kaon identification allows tagging of hyperon beam
- 4π detector allows full reconstruction of the event
- Hydrogen and deuterium targets

Cross sections

- Λp
- Σ⁻p
- Σ+p

• \\ \d

Cross section approach benchmarked using pp scattering

Final State Interactions and Two-Step Processes

- Two-step process where Hyperon rescatters with secondary nucleon
- Kaon identification allows tagging of hyperon beam

Λn

Λp

- 4π detector allows full reconstruction of the event
- Hydrogen and deuterium targets

Polarization observables

• Лр

Cross sections

Σ⁻p

• \\ \ \ \ \ \

- Σ⁻p
- Σ+p Λd

Cross section approach benchmarked using pp scattering

Thomas Jefferson Laboratory

6-GeV era: 1995-2012

• C.W. electron beam: 2-ns wide bunch

period, 0.2-ps bunch length

- Polarized Source: Pe ~ 86%
- Beam energies up to $E_0 = 6 \text{ GeV}$
- Beam Current up to 200 μA

Hall-B: The CLAS detector and Tagger facility

Improved Ap Elastic Scattering Cross Sections

Cross section determination challenging

- Detector acceptance
- Detector efficiency
- Hyperon beam luminosity

Order of magnitude higher statistics

$$\sigma(p_{\Lambda}) = \frac{Y(p_{\Lambda})}{A(p_{\Lambda}) \times \mathcal{L}(p_{\Lambda}) \times \Gamma}$$

$$\mathcal{L}(p_{\Lambda}) = \frac{N_A \times \rho_T \times l}{M} N_{\Lambda}(p_{\Lambda})$$

$$\frac{N_{\Lambda}}{\mathcal{L}_{\gamma}} = \frac{d\sigma}{d\Omega} (2\pi) [\Delta \cos(\theta)] \qquad P(x) = \exp\left[-\frac{M}{p} \frac{x - x_0}{\tau}\right]$$

L: Path length determined from realistic simulations, accounting for beam size and kinematic dependence of the photoproduction cross section, as well as the decay length of hyperons

Improved Ap Elastic Scattering Cross Sections

effective field theory (Haidenbauer Eur. Phys. J. A 56, 91 (2020))

https://doi.org/10.1103/PhysRevLett.127.272303

J. Haidenbauer and U.-G. Meißner, Phys. Rev. C 72, 044005 (2005) T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59, 21 (1999).

Approach confirmation via pp scattering

Statistical uncertainties -> size of marker Systematic uncertainties of the order of 10% Additional points at higher energies -- TBD

BG1 + vtz independent eff BG2 + vtz dependent eff

p_=650-750 (MeV/c)

vdΩ (mt

р₂=750-850 (MeV/c)

Σp Elastic Scattering Cross Sections

ANN Elastic Scattering Cross Section via Ad

Additional Constraints on the YN interaction

- Hyperons are photoproduced with R=1
- Utilize to study polarization effects in YN interaction
 - further constraints on the underlying dynamics.

Polarisation observables in Hyperon Photoproduction

$$\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - P_{lin} \sum \cos 2\phi + \alpha \cos \theta_x (-P_{lin} O_x \sin 2\phi - P_{circ} C_x) \}$$

 $-\alpha\cos\theta_y(-P_y+P_{lin}T\cos 2\phi)-\alpha\cos\theta_z(P_{lin}O_z\sin 2\phi+P_{circ}C_z)\}$

 $d\sigma$

Beam Polarisation Linearly polarized Circularly polarized

 $\begin{array}{l} \Lambda \ \text{Recoil Polarisation} \\ \text{Self-analysing power} \\ \alpha = 0.75 \end{array}$

Hyperon Nucleon via FSI

Nick Zachariou – University of York

√s (GeV)

50

20

10

 $m_{\Sigma} + m_p$ threshold

5

•

 \bullet

Summary and outlook

- Exclusive hyperon photoproduction provides us with tools to study the Hyperon-Nucleon interaction
- Access to both cross section and polarization observables
- First results on Ap elastic scattering published last year
- Ongoing efforts to establish Σp cross section
- Ongoing efforts to establish Λd cross section \rightarrow access three body forces
- Polarisation observables provide additional constraints
- KL facility to open door for doubly strange hyperon interactions with nucleons.
- Exciting results in the pipeline!!!

IOP 2023 York

Thank you

Nick Zachariou – University of York

Improved Ap Elastic Scattering Cross Sections

Improved Ap Elastic Scattering Cross Sections

https://doi.org/10.1103/PhysRevLett.127.272303

Background contribution

Polarisation Observables An

- Existing YN models allow the calculation of single and double polarization observables
- Two YN potentials (NSC97F and NSC89) give the correct hypetrition binding energy
- NSC97F and NSC89 lead to very different predictions of polarisation observables at some kinematics

Nick Zachariou – University of York

Polarisation Observables Σp

- Results extrapolated to zero missing-momentum agree with QF ٠ study
- Large dilutions at higher missing momenta due to FSI
- Relative dilutions can be attributed to the various FSI contributions
- Different reaction mechanisms cause unique combinations of ٠
- $\Sigma_{K}(p_{x}), \Sigma_{\Lambda}(p_{x}), \text{ and } \Sigma_{p}(p_{x})$ ٠

Polarisation Observables

Different reaction mechanisms cause unique combinations of

 $\Sigma_{\kappa}(p_x), \Sigma_{\Lambda}(p_x), \text{ and } \Sigma_{n}(p_x)$

- $\frac{\Sigma_{det}}{\Sigma_{OF}} = F\left(\frac{N_{FSI}}{N_T}\right)$ determined from generated data
- Kinematic footprint of each mechanism into lookup tables ullet

• Extract $\frac{\Sigma_{det}}{\Sigma_{OF}}(p_x)$ from data and determine $\left(\frac{N_{FSI}}{N_T}\right)$ from comparison with lookup tables

ML techniques that provides us with kinematic dependence of FSI-to-total ratios of each mechanism

Polarisation observable provides us with means to study YN reducing model dependent Nick Zachariou – University of York constraints 32