

THE UNIVERSITY of EDINBURGH

Higgs physics at ATLAS (& CMS): highlights & prospects Liza Mijović

Higgs Maxwell Workshop 2023

Outline

Status:

- mass
- couplings
 - 2nd generation
- Higgs width

Prospects:

- mass
- couplings
 - 2nd generation
- Higgs potential

Image credits: Nature Picture Library and The Nobel Foundation, S. Jardeback (artist), L. Engblom(reproduction).

ATLAS: data-taking

- Run3 ongoing: 2022-2025.
- Data for today's results: **Run2**, $\sqrt{s} = 13$ TeV.
- About x2 LHC design instantaneous luminosity & pile-up.
- Data-taking efficiency: 94%, data quality fraction: 95% \Rightarrow 139 fb⁻¹ of data.

Higgs Production and Decay

Mass

$$\begin{split} H {\rightarrow} \textit{ZZ}^* {\rightarrow} \textit{4\ell} \\ 124.99 \pm \underbrace{\textbf{0.18}}_{\texttt{0.18}} \text{ stat.} \pm \textbf{0.04} \text{ syst. GeV} \end{split}$$

$\begin{array}{c} \mathbf{H} {\rightarrow} \boldsymbol{\gamma} \boldsymbol{\gamma} \ (\text{36 fb}^{-1}) \\ 124.93 \pm 0.21 \text{ stat.} \pm \textbf{0.34} \text{ syst. GeV} \end{array}$

6/36

Cross-section

SM : $\sigma(pp \rightarrow H, \sqrt{s} = 13 \text{ TeV}) = 55.6 \pm 2.5 \text{ pb}$ ATLAS : $\sigma(pp \rightarrow H, \sqrt{s} = 13 \text{ TeV}) = 55.5^{+4.0}_{-3.8} \text{ pb} (\pm 3.2(\text{stat.}) {}^{+2.4}_{-2.2}(\text{sys.}))$

7/36

Source: arXiv:2207.08615.

Higgs: combination

8/36

Higgs couplings interpretation

SMEFT, 2HDM & *k*-framework:

Couplings:

$$\kappa_j^2 = \frac{\sigma_j}{\sigma_j^{\text{SM}}} \text{ or } \kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{\text{SM}}}$$

Width:

$$\kappa_{\mathrm{H}}^{2}(\kappa, B_{\mathrm{i.}}, B_{\mathrm{u.}}) = rac{\sum_{j} B_{j}^{\mathrm{SM}} \kappa_{j}^{2}}{1 - B_{\mathrm{i.}} - B_{\mathrm{u.}}}$$

Source: Nature 607 52-59 (2022)

Higgs-muon coupling

Challenges:

- Low BR(H $ightarrow \mu\mu$) \sim 0.022%.
- Very low S/B ratio.
- Requirement: stringent constraint on background.

Run2 results:

- CMS: 3.0 σ (2.5 expected), $\mu = 1.19 \pm 0.43$
- ATLAS: 2.0 σ (1.7 expected), $\mu = 1.2 \pm 0.6$

Higgs-charm coupling

Challenges in addition to $\rm VH, H \rightarrow b\bar{b}$:

- BR(H \rightarrow cc̄)=2.9% << BR(H \rightarrow bb̄).
- Tagging charm jets. Efficiency(tag+veto): c-jet:27%, b-jet:8%, light: 1.6%

Higgs-charm coupling: analysis

- SR-s: N(ℓ), N(c-tags), Njet, $p_T(V)$.
- Control regions: large $\Delta R(jet1, jet2)$

• Simultaneous fit of VV and VH.

36

Higgs-charm coupling

• $|\kappa_c| < 8.5$ @ 95% CL

Source: arXiv:2201.11428

- $|\kappa_c/\kappa_b| < 4.5$ @ 95% CL.
- $m_b/m_c = 4.578 \pm 0.008$
- Higgs-charm coupling < Higgs-bottom coupling.

Higgs width

Source: Nature Picture Library Bod an Deamhain, Cairngorms

Why Measure the Higgs Width?

1) Key properties of a fundamental particle: mass (m) and lifetime (τ). Higgs boson: $\Delta m_H/m_H$: ~ 2%, τ_H : not measured yet! Measurement of the Higgs width (Γ_H) would determine lifetime: $\tau_H = \hbar/\Gamma_H$.

Width of a resonance:

- Heisenberg's uncertainty: $\Delta E \Delta t \geq \hbar/2$
- Einstein's relativity: $\mathrm{E}\sim\mathrm{mc}^2$

2) Higgs couplings (c) are extracted from cross-sections: $\sigma \propto c_f^2 / \Gamma_{\rm H}$. $\Gamma_{\rm H}$: needed to reliably extract all Higgs couplings.

Higgs Width: the Challenge

CMS Events / 2 GeV 70 Data • Higgs boson is predicted to be H(125) 60 very narrow: $\Gamma_{\rm H}^{\rm SM} \sim 4.1 \, {\rm MeV}$. $a\bar{a} \rightarrow ZZ, Z\gamma'$ $aa \rightarrow ZZ, Z\gamma^*$ 7+X 50 • Detector resolution: O(GeV). 40 Events Events 30 20 10 $\Gamma_{\rm tr}^{\rm SM} \sim 4.1 ~{\rm MeV}$ m $\Gamma(\text{detector}) \sim 1 \text{ GeV}^{\text{m}}$ 90 100 110 120 130 140 • Line-shape measurement [1]: $\Gamma_{\rm H} \lesssim 300 \cdot \Gamma_{\rm H}^{20}$ 150 160 170 m₄, (GeV)

How could we probe the width @ the LHC?

Figure [1]: CMS collaboration, JHEP 11 (2017) 047.

Off-shell production

$$\frac{d\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{dM_{4\ell}^2} \propto \frac{c_{\rm g}^2 \cdot c_{\rm Z}^2}{(M_{4\ell}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2 \Gamma_{\rm H}^2}$$

Sources: N. Kauer, G. Passarino, JHEP08 (2012) 116, F. Caola, K. Melnikov, PRD 88 (2013) 054024, J. Campbell et al. JHEP04 (2014) 06017/36

Off-shell production @ ATLAS

• $m_{4\ell}$ fit for SM off-shell production (left) & ML discriminant (right)

Off-shell signal strength

Source: ATLAS-CONF-2022-068, first evidence for off-shell production by CMS in Nature Physics 18 (2022).

Interpretation in terms of $\Gamma_{\rm H}$

Interpretation: Caveat

• $\Gamma_{\rm H}$ extracted from:

 $\frac{\sigma^{\rm off-shell}}{\sigma^{\rm on-shell}} \propto \Gamma_{\rm H}$

- Assumption: $\mu_{\text{off-shell}}/\mu_{\text{on-shell}} = 1$.
- Generally not valid in presence of BSM physics [1].

Prospects

LHC Schedule

Proton-proton dataset

ATLAS Phase-II upgrade

Higgs Mass @ HL-LHC

$m_{4\ell}$ expected uncertainty (MeV)	inclusive	4μ	4e	2e2µ	2µ2e
Total	26	30	105	60	67
Syst impact	16	11	64	31	32
Stat only	22	28	83	51	59

CMS Phase-2 Simulation Preliminary

Higgs couplings @ HL-LHC

$$\kappa_j^2 = \frac{\sigma_j}{\sigma_j^{\text{SM}}} \text{ or } \kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{\text{SM}}}$$

Uncertainty:

- Gauge boson couplings: 1.5% 2.5%
- 3rd gen fermions: 2% 4%
- Dominated by theory uncertainty.
 - Assumption: 1/2 Run2 uncertainty.
 - How will we achieve this 1/2?

Higgs-muon coupling @ HL-LHC

- $\bullet~{\rm H}{\rightarrow}~$ observation feasible with \sim 300 $~{\rm fb}^{-1}$ of data
- By end of HL-LHC: $\Delta \kappa_{\mu} / \kappa_{\mu} \sim 3\%$

Source: CMS-FTR-21-006. Note: the projection uses HL-LHC detector resolution.

Higgs-charm coupling @ HL-LHC

- ATLAS: $|\kappa_c| < 3$
- CMS: $\mu_{\rm VH,H \rightarrow c\bar{c}} = 1.0 \pm 0.6$ stat. ± 0.5 syst.

Source: Snowmass White Paper: ATL-PHYS-PUB-2022-018. Constraints from differential x-section measurements not yet part of projections 29/ 36

Higgs-charm coupling @ LHCb

- Run1: $|\kappa_c| <$ 80, 2 $\,{
 m fb}^{-1}$ of data
- HL-LHC: $|\kappa_c| < 2-3$, 300 ${
 m fb}^{-1}$ of data

The Higgs Potential

Credit: The Nobel Foundation Susanne Jardeback (artist) Lovisa Engblom(reproduction)

Higgs potential

$$V(H) = \frac{1}{2}m_H^2H^2 + \frac{\lambda_3}{\nu}H^3 + \frac{1}{4}\lambda_4H^4$$

$${
m SM}: \lambda_3=\lambda_4=\lambda^{
m SM}=m_H^2/(2v^2)$$

Define :
$$\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$$

No sensitivity to $\lambda_4 @$ LHC

Probe κ_{λ} : **HH** production.

HH production

HH production cross-sections and event shapes sensitive to κ_{λ} .

HH production @ LHC

 κ_{λ} interpretation, accounting for cross-section, event shape, and acceptance \times efficiency effects.

Higgs potential @ HL-LHC

- Observation?
- HH signal strength: 22% stat. and $\frac{33\%}{-30\%}$ stat. \oplus syst.
- κ_{λ} 1- σ interval: [0.7,1.4] stat. and [0.5,1.6] stat. \oplus syst.

Take-aways

Higgs width:

- Key for knowledge of all Higgs couplings.
- Off-shell production: $\Delta\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}\sim 60\%.$
- Caveat: assumptions about BSM.

Higgs potential:

- Main probe: HH production.
- HH @ HL-LHC: close to observation.
- HH: an incomplete probe; no λ_4 .

Future colliders: key for both areas.

Image credits: Nature Picture Library and The Nobel Foundation, S. Jardeback (artist), L. Engblom(reproduction).

36

Off-shell production

Interpretation: Caveat

Model-independent measurement of $\Gamma_{\rm H}$: key task for future colliders.

Figures: CMS, Nat. Phys. (2022), C. Englert et. al, JHEP 05 (2015) 145.