

Precision Physics for Single and Multi-Higgs Boson Production

Stephen Jones IPPP Durham / Royal Society URF

THE ROYAL SOCIETY

The Standard Model

The Standard Model and Beyond

Higgs Couplings

The Higgs sector continues to yield impressive fundamental discoveries

2018 ($t\bar{t}H$): First direct observation of top-quark Yukawa coupling

CMS 1804.02610/ ATLAS 1806.00425

2020 ($H \rightarrow \mu\mu$): First direct evidence that Higgs field is responsible for mass of 2nd gen. leptons

CMS 2009.04363 / ATLAS 2007.07830

2022 ($H \rightarrow c\overline{c}$): First hints that Higgs field is responsible for mass of 2nd gen. quarks

CMS 2205.05550 / ATLAS 2201.11428

Imagine we had current experimental results for $gg \rightarrow H$, but only LO theory...

Imagine we had current experimental results for $gg \rightarrow H$, but only LO theory...

Imagine we had current experimental results for $gg \rightarrow H$, but only NLO theory...

Much better with NNLO theory, but theory uncertainty is still quite large...

Anastasiou, Melnikov 02; Harlander, Kilgore 02; Ravindran, Smith, van Neerven 03;

*Warning: just a cartoon, don't trust data/theory from this plot!

Reality: we actually have N³LO theory, beautiful example of precision @ LHC

Anastasiou, Duhr, Dulat, (Furlan), (Gehrmann), Herzog, Mistlberger 16; Mistlberger 18;

*Warning: just a cartoon, don't trust data/theory from this plot!

Figure: G. Zanderighi / M. Wiesemann Sigure: G. Zanderighi / M. Wiesemann

11

Figure: G. Zanderighi / M. Wiesemann

Cartoon 2: How Important is Precision?

Precision theory can enhance the discovery potential of our experiments!

Figure: G. Zanderighi / M. Wiesemann

Upcoming Experiments: Precision

HL-LHC construction underway ~10x integrated luminosity of LHC (LHC 0.3 ab⁻¹, HL-LHC: 3 ab⁻¹)

 Experimental projection is pessimistic considering current performance

2) Plot shown assumes reduction by factor 2 of today's uncertainties

Theory uncertainty is expected to dominate HL-LHC Higgs physics

→ See next talk! (Harald Fox)

Outline

Higgs Boson Production

Gluon Fusion

Theory uncertainties in gluon fusion

Boosted Higgs boson production & the top-quark mass

ZH Production

Impact of the gluon channel

Remaining uncertainties and open questions

Di-Higgs Boson Production

Current status and open questions

*All of these areas are very active, apologies for my very biased topic selection

How do we Improve Precision?

$$d\sigma = \int dx_a dx_b f(x_a) f(x_b) d\hat{\sigma}_{ab}(x_a, x_b) F_J + \mathcal{O}\left((\Lambda/Q)^m\right)$$
Parton Distribution Hard Scattering Non-perturbative Functions (PDFs) Matrix Element effects ~ few %

Higgs Production & Decay

ATLAS-CONF-2021-053

ATLAS Preliminary	⊢ •-1	Total	
$V_s = 13 \text{ TeV}, 36.1 - 139 \text{ fb}^{-1}$		Stat. Svst	
$m_H = 125.09 \text{ GeV}$		SM	
$p_{SM} = 79\%$		-	
ggF γγ	1.02	Total + 0.11 - 0.11	Stat. Syst. (+ 0.08 , + 0.07 - 0.08 , - 0.07)
ggF ZZ	0.95	+ 0.11 - 0.11	$\left(\begin{array}{cc} +0.10 & +0.04 \\ -0.10 & -0.03 \end{array}\right)$
ggF WW	1.13	+ 0.13 - 0.12	$(\begin{array}{ccc} +0.06 & +0.12 \\ -0.06 & , & -0.10 \end{array})$
ggF ττ 📫	0.87	+ 0.28 - 0.25	$\left(\begin{array}{cc} + \ 0.15 \\ - \ 0.15 \end{array} \right. , \begin{array}{c} + \ 0.23 \\ - \ 0.20 \end{array} \right)$
ggF+ttH μμ 📕 💶 🖬	0.52	+ 0.91 - 0.88	$\left(\begin{array}{cc} +0.77 & +0.49 \\ -0.79 & , & -0.38 \end{array} \right)$
VBF γγ 🔎	1.47	+ 0.27 - 0.24	$\left(\begin{array}{ccc} +0.21 & +0.17 \\ -0.20 & , & -0.14 \end{array}\right)$
VBF ZZ	1.31	+ 0.51 - 0.42	$\left(\begin{array}{cc} +0.50 & +0.11 \\ -0.42 & , & -0.06 \end{array}\right)$
VBFWW	1.09	+ 0.19 - 0.17	$\left(\begin{array}{ccc} +0.15 & +0.11 \\ -0.14 & -0.10 \end{array}\right)$
VBF ττ 🙀	0.99	+ 0.20 - 0.18	$\begin{pmatrix} +0.14 & +0.15 \\ -0.14 & -0.12 \end{pmatrix}$
VBF+ggF bb	0.98	+ 0.38 - 0.36	$\left(\begin{array}{cc} + 0.31 & + 0.21 \\ - 0.33 & - 0.15 \end{array} \right)$
VBF+VH μμ	2.33	+ 1.34 - 1.26	$\left(\begin{array}{cc} + 1.32 & + 0.20 \\ - 1.24 & , & - 0.23 \end{array}\right)$
VH γγ	1.33	+ 0.33 - 0.31	$\left(\begin{array}{ccc} +0.32 & +0.10 \\ -0.30 & -0.08 \end{array} \right)$
VH ZZ	1.51	+ 1.17 - 0.94	$\left(\begin{array}{cc} +1.14 & +0.24 \\ -0.93 & -0.16 \end{array}\right)$
	0.98	+ 0.59 - 0.57	$\left(\begin{array}{cc} + \ 0.49 \\ - \ 0.49 \end{array} \right.$, $\begin{array}{c} + \ 0.33 \\ - \ 0.29 \end{array} \right)$
WH bb	1.04	+ 0.28 - 0.26	$\left(\begin{array}{ccc} + \ 0.19 \\ - \ 0.19 \end{array} \right. , \begin{array}{c} + \ 0.20 \\ - \ 0.18 \end{array} \right)$
ZH bb	1.00	+ 0.24 - 0.22	$\left(\begin{array}{ccc} + 0.17 & + 0.17 \\ - 0.17 & - 0.14 \end{array} \right)$
ttH+tH γγ	0.93	+ 0.27 - 0.25	$\left(\begin{array}{cc} + \ 0.26 \\ - \ 0.24 \end{array} \right.$, $\begin{array}{c} + \ 0.08 \\ - \ 0.06 \end{array} \right)$
ttH+tH WW	1.64	+ 0.65 - 0.61	$\left(\begin{array}{cc} + 0.44 \\ - 0.43 \end{array} , \begin{array}{c} + 0.48 \\ - 0.43 \end{array} \right)$
ttH+tH ZZ	1.69	+ 1.69 - 1.10	$\left(\begin{array}{cc} +1.65 & +0.37 \\ -1.09 \end{array} \right)$, $\begin{array}{c} -0.16 \end{array} \right)$
ttH+tH TT F	1.39	+ 0.86 - 0.76	$\left(\begin{array}{cc} +0.66 & +0.54 \\ -0.62 \end{array} \right)$, $\begin{array}{c} -0.44 \end{array} \right)$
ttH+tH bb	0.35	+ 0.34 - 0.33	$(\begin{array}{c} +0.20 \\ -0.20 \end{array}, \begin{array}{c} +0.28 \\ -0.27 \end{array})$
-4 -2 0 2 4	<u> </u>	6	8
. <u> </u>	× B n	ormal	lised to SM

Gluon Fusion

A Useful Approximation: Heavy Top Limit

Heavy Top Limit (HTL): integrate out top quarks ($m_T \rightarrow \infty$) Introduces couplings $c_h \& c_{hh}$ between gluons and Higgs Removes dependence on m_T and decreases the number of loops by 1

Gluon Fusion: Error Budget

Progress

 $\delta(1/m_t)$: Known to NNLO, removed

 $\delta(t, b, c)$: Challenging but possible

 $\delta(\mathrm{EW})$: gg known, reduced from ~1% to 0.6%

 $\delta(PDF - TH)$: Progress but uncertainty persists

 $\delta(\text{scale}):$ Some ingredients known

Czakon, Harlander, Klappert, Niggetiedt 21

Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer 20; + Bonetti, Panzer, Smirnov, Tancredi, Melnikov, ...

McGowan, Cridge, Harland-Lang, Thorne 22

Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22

Boosted Higgs: NLO H+jet

To attack $\delta(1/m_T)$ need amplitudes with m_T included $pp \rightarrow Hjj @$ LO (1-loop) $pp \rightarrow Hj @$ NLO (2-loop) $pp \rightarrow H @$ NNLO (3-loop)

 $gg \rightarrow H + j$

The ppHj amplitude is itself interesting Predicts **boosted** (high- p_T) Higgs

Challenging calculation (s, t, m_H, m_T) completed with various techniques:

Small m_T approximation

Kudashkin, (Lindert), Melnikov, Wever 17, (18); Neumann 18;

Numerical evaluation of integrals

SPJ, Kerner, Luisoni 18, 21

The HTL alone is a very poor approximation of the large- p_T behaviour

Boosted Higgs: NLO H+jet

Recently, $pp \rightarrow Hj$ was calculated including full m_B, m_T dependence using the series expansion of differential equations

Bonciani, Del Duca, Frellesvig, Hidding, Hirschi, Moriello, Salvatori, Somogyi, Tramontano 22;

Confirm earlier results that indicated NLO corrections are large $K_{\rm NLO/LO} \approx 2$ Bottom and top/bottom interference effects relevant only for low- p_T Result very flexible: allows quark masses to be renormalised in different schemes

Boosted Higgs: NLO H+2jet

Interestingly, a particular approximation (FT_{approx}) works quite well for H+j Use exact Born + Reals Approximate 2-loop Virtuals with $|\mathscr{M}_4^2(m_t,\mu_R^2;\{p\})|^2 \rightarrow |\mathscr{M}_4^1(\infty,\mu_R^2;\{p\})|^2 \frac{|\mathscr{M}_4^1(m_t;\{p\})|^2}{|\mathscr{M}_4^0(\infty;\{p\})|^2}$

Chen, Huss, SPJ, Kerner, Lang, Lindert, Zhang 21

Assuming approximation works similarly well for higher jet multiplicity, can produce improved H+2j predictions just by computing full reals

Gluon Fusion: NNLO with Full top-quark Mass

Decreases $\sigma_{\rm tot}$ by -0.26% @ 13 TeV compared to heavy top limit (HTL)

Intricate interplay between mass effects gg (+0.62%), qg (-16%), qq (-15%) Complete NNLO results obtained using STRIPPER framework

Gluon Fusion: Mixed QCD-EW Corrections

Increases σ_{tot} by +5.1 % @ 13 TeV, reduces residual uncertainty $\delta(EW) \sim 0.6$ % Favouring factorisation of EW corrections: $\sigma = \sigma_{LO} (1 + \delta_{OCD}) \times (1 + \delta_{EWK})$

Compatible with previous estimates:

Soft approx: +5.4%, $M_H \ll M_V$: +5.2%, $M_H \gg M_V$: +5.4%

Bonetti, Melnikov, Tancredi 18;

Anastasiou, Boughezal, Petriello 09:

Anastasiou, Del Duca, Furlan, Mistlberger, Moriello, Schweitzer, Specchia 19

ZH Production

$pp \rightarrow ZH$: Role of ggZH Channel

Drell-Yan-like contribution recently computed @ N³LO Baglio, Duhr, Mistlberger, Szafron 22

Gluon channel contributes to

- $pp \rightarrow ZH @ NNLO$
- ~10% of the total cross section at LHC (due to large gluon luminosity)
- 2) Has large uncertainty >100%
- 3) A dominant TH uncertainty on ZH analyses

This motivates calculating ggZH @ NLO (2-loop)

$gg \rightarrow ZH$: 2-loop Virtual Amplitude

A challenging calculation (s, t, m_H, m_T, m_Z), completed with various techniques

(Small m_Z, m_H) Wang, Xu, Xu, Yang 21; (Small $m_T \& 1/m_T$ Expansions) Davies, Mishima, Steinhauser 20; (Numerical) Chen, Heinrich, SPJ, Kerner, Klappert, Schlenk 20; ($p_T \& 1/m_T$ Expansions) Alasfar, Degrassi, Giardino, Gröber, Vitti 21; Bellafronte, Degrassi, Giardino, Gröber, Vitti 22; Degrassi, Gröber, Vitti, Zhao 22; (Small $m_T \&$ Numerical) Chen, Davies, Heinrich, SPJ, Kerner, Mishima, Schlenk, Steinhauser 22

Our full result has 452 ``master integrals'' and ~5GB amplitude

Using (IBP) relations between the integrals we found a much simpler ~1GB expression for amplitude

Largest coefficient (double-tadpole) 150 MB \rightarrow 5 MB

Chen, Heinrich, SPJ, Kerner, Klappert, Schlenk 20;

Aside: Evaluating Feynman Integrals

One of the biggest challenges for processes like this is computing the integrals We evaluate them numerically on CPUs & GPUs using **pySecDec**

Try it now at: https://github.com/gudrunhe/secdec

Previous update (v1.5):

Expansion by Regions & Amplitude Evaluation

Heinrich, Jahn, SPJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21

Upcoming (wip->v1.6):

Significant speed improvements, flexible amplitude input, smaller generated code, ...

* v1.5: adaptive sampling, automatic contour deformation adjustment;

- * *dev*: separation of real and complex variables in the integrand code;
- * *wip*: simlification of the integrand code, vectorization on CPU (AVX2).

The latest release is fast; the next release will be faster.

9

$gg \rightarrow ZH$: Results

Putting all pieces together (Born + reals + virtual) can obtain full NLO results

Chen, Davies, Heinrich, SPJ, Kerner, Mishima, Schlenk, Steinhauser 22

Total Cross-section

\sqrt{S}	LO [fb]	NLO [fb]
$13 { m TeV}$	$52.42^{+25.5\%}_{-19.3\%}$	$103.8(3)^{+16.4\%}_{-13.9\%}$
$13.6 { m TeV}$	$58.06^{+25.1\%}_{-19.0\%}$	$114.7(3)^{+16.2\%}_{-13.7\%}$
$14 { m TeV}$	$61.96^{+24.9\%}_{-18.9\%}$	$122.2(3)^{+16.1\%}_{-13.6\%}$

Invariant Mass

NNPDF31_nlo_pdfas $m_t^{OS} = 173.21 \text{ GeV}$ $\mu = m_{ZH}$ $\mu_{R,F} \in \left[\frac{\mu}{2}, 2\mu\right]$ (7 - point)

NLO corrections are large and lie outside the usual LO scale uncertainties

NLO/LO somewhat* flat except at production & top thresholds

*Starts to rise above ~1 TeV (also depends on what real diagrams are included)

$gg \rightarrow ZH$: Transverse Momentum

H Transverse Momentum

Z Transverse Momentum

Z p_T : Large NLO corrections, rising sharply at large $p_{T,Z}$ H p_T : Extremely large NLO corrections, rising very sharply at large $p_{T,H}$ Placing cuts on soft Z or H emission slightly tames growth

Radiating an additional jet opens up an important new region of phase-space Very important to include higher order corrections in this region

$gg \rightarrow ZH$: Z vs H

The different behaviour of $p_{T,Z}$ and $p_{T,H}$ was observed previously in $gg \rightarrow ZH + j$ Hespel, Maltoni, Vryonidou 15; Les Houches 19

Traced to configurations where Higgs recoils against a hard jet, with a soft Z

 $p \cdot p_Z$

One observation

Maltoni et al. attributed this to *t*-channel gluon exchange

If we apply an eikonal approximation to such diagrams, the enhancement of soft Z bosons can be understood (Soft Z emission): $\frac{p^{\mu}}{2}$

(Soft *H* emission): $\frac{m_t}{p \cdot p_H}$ P Ratio for large radiator (transverse) momentum $\sim p_T/m_t \gg 1$

$gg \rightarrow ZH$: Mass Scheme Uncertainty

Observations @ $m_{ZH} = 1$ TeV

Large difference between different schemes LO: OS result ~2.9x $\overline{\text{MS}}$ result NLO: Difference reduced ~1.9x If taken as a theoretical uncertainty, this is larger than the scale uncertainty!

Such mass scheme uncertainties show up in other processes (e.g. HH, H*, HJ)

Baglio, Campanario, Glaus, Mühlleitner, (+Ronca) Spira, Streicher 18, (20); SPJ, Spira (Les Houches 19)

HH Production

$$\sigma(pp \to HH) \sim \frac{\sigma(pp \to H)}{1000}$$

HH: Why Measure it?

$$\mathcal{L} \supset -V(\phi), \quad V(\Phi) = -\mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2$$

EW symmetry breaking

$$\mu^2 = \lambda v^2$$

$$m_H^2 = 2\lambda v^2$$

$$V(H) = \frac{1}{2}m_H^2 H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4,$$
SM: self-couplings
determined by m_H, v

$$\mu$$

$$V(H) = \frac{1}{2}m_H^2 H^2 + \frac{\lambda v H^3}{4} + \frac{\lambda}{4} H^4,$$
EXP: need measurements
to confirm/refute this

$$V(H) = \frac{1}{2}m_H^2 H^2 + \frac{\lambda}{4} V H^3 + \frac{\lambda}{4} H^4,$$
EXP: need measurements
to confirm/refute this

$$V(H) = \frac{1}{2}m_H^2 H^2 + \frac{\lambda}{4} V H^3 + \frac{\lambda}{4} H^4,$$
EXP: need measurements
to confirm/refute this

g

g

HH: Experimental Bounds

Very impressive experimental results

Combining 3 decay channels

+ using H and HH information CERN-EP-2022-149

> $\mu_{HH} < 2.4 @ 95\% cl$ $-0.4 < \kappa_{\lambda} < 6.3 @ 95\% cl$

HL-LHC projection

Using HH data from 3 channels Assuming TH uncertainty is halved ATL-PHYS-PUB-2022-053

Current

HL-LHC Projection

HH: Theory History

[1] Glover, van der Bij 88; [2] Dawson, Dittmaier, Spira 98; [3] Shao, Li, Li, Wang 13; [4] Grigo, Hoff, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Grigo, Melnikov, Steinhauser 14; [7] Grigo, Hoff 14; [8] Maltoni, Vryonidou, Zaro 14; [9] Grigo, Hoff, Steinhauser 15; [10] de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; [11] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16; [13] Ferrera, Pires 16; [14] Heinrich, SPJ, Kerner, Luisoni, Vryonidou 17; [15] SPJ, Kuttimalai 17; [16] Gröber, Maier, Rauh 17; [17] Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18; [18] Grazzini, Heinrich, SPJ, Kallweit, Kerner, Lindert, Mazzitelli 18; [19] de Florian, Mazzitelli 18; [20] Bonciani, Degrassi, Giardino, Gröber 18; [21] Davies, Mishima, Steinhauser 19; [26] Chen, Li, Shao, Wang 19, 19; [27] Davies, Herren, Mishima, Steinhauser 19, 21; [28] Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 21; [29] Bellafronte, Degrassi, Giardino, Gröber, Vitti 22; [30] Davies, Mishima, Steinhauser, Zhang 22;

HH: NLO

Results including m_T are known up to NLO

(Numerical) Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16; Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18;

(Small m_T) Davies, Mishima, Steinhauser, Wellmann 18, 18;

(Numerical & Small m_T) Davies, Heinrich, SPJ, Kerner, Mishima, Steinhauser, Wellmann 19

For HH production:

The NLO corrections are again large NLO/LO \approx 1.7 and scale uncertainties ~halved

 FT_{approx} does not work so well above the the top-quark threshold

This is exactly the sort of situation depicted in our ``Cartoon 2''

HH: N³LO Heavy Top Limit

Chen, Li, Shao, Wang 19

Ingredients: N³LO H calculation

Anastasiou, Duhr, Dulat, Herzog, Mistlberger 15; Dulat, Lazopoulos, Mistlberger 18

+ 2-loop 4-point functions

Banerjee, Borowka, Dhani, Gehrmann, Ravindran 18

\sqrt{s} order	$13 { m TeV}$	$14 { m TeV}$	$27 { m TeV}$	100 TeV
LO	$13.80^{+31\%}_{-22\%}$	$17.06^{+31\%}_{-22\%}$	$98.22^{+26\%}_{-19\%}$	$2015^{+19\%}_{-15\%}$
NLO	$25.81^{+18\%}_{-15\%}$	$31.89^{+18\%}_{-15\%}$	$183.0^{+16\%}_{-14\%}$	$3724_{-11\%}^{+13\%}$
NNLO	$30.41^{+5.3\%}_{-7.8\%}$	$37.55^{+5.2\%}_{-7.6\%}$	$214.2^{+4.8\%}_{-6.7\%}$	$4322_{-5.3\%}^{+4.2\%}$
$N^{3}LO$	$31.31^{+0.66\%}_{-2.8\%}$	$38.65^{+0.65\%}_{-2.7\%}$	$220.2^{+0.53\%}_{-2.4\%}$	$4438^{+0.51\%}_{-1.8\%}$

T Very mild scale dependence

HH: Beyond HTL @ N³LO

Top quark mass effects included in N³LO HTL (up to NLO)

Chen, Li, Shao, Wang 19

Results agree with NNLO result but with smaller scale uncertainty Results recently computed at $N^{3}LO + N^{3}LL$ Ajjath, Shao 22

HH: EFT

Can leverage SM calculations @ NLO (NNLO,...) to compute also EFT results (... though EFTs can be tricky HEFT/SMEFT, O_6/O_6^2 , $O_{8, ...}$)

Related in SMEFT

EFT results available in various approximations:

NLO (HEFT) Buchalla, Capozi, Celis, Heinrich, Scyboz 18;
+ PS Heinrich, SPJ, Kerner, Scyboz 20;
NLO + NNLO' de Florian, Fabre, Heinrich, Mazzitelli, Scyboz 21
NLO (SMEFT) Heinrich, Lang, Scyboz 22;

HH: Mass Scheme Uncertainty

Comparing $gg \rightarrow HH$ and $gg \rightarrow ZH$ we see a different high-energy behaviour

 $A_i^{\text{fin}} = a_s A_i^{(0),\text{fin}} + a_s^2 A_i^{(1),\text{fin}} + \mathcal{O}(a_s^3) \quad \text{with} \ a_s = \alpha_s/4\pi$

 Davies, Mishima, Steinhauser, Wellmann 18;
 Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira, Streicher 20

$$\begin{split} A_{i}^{(0)} &\sim m_{t}^{2} f_{i}(s,t) \\ A_{i}^{(1)} &\sim 6 C_{F} A_{i}^{(0)} \log \left[\frac{m_{t}^{2}}{s} \right] \end{split}$$

LO: m_t^2 from y_t^2 NLO: leading $log(m_t^2)$ from mass c.t. **ZH** Davies, Mishima, Steinhauser 20

$$\begin{split} A_i^{(0)} &\sim m_t^2 f_i(s,t) \; \log^2 \left[\frac{m_t^2}{s} \right] \\ A_i^{(1)} &\sim \frac{(C_A - C_F)}{6} A_i^{(0)} \; \log^2 \left[\frac{m_t^2}{s} \right] \end{split}$$

LO: one m_t from y_t NLO: leading $log(m_t^2)$ not coming from mass c.t. (C_A)

Would be interesting to further understand these structures, similar powersuppressed mass logarithms were studied in single H $\frac{\text{Liu, Modi, Penin 22}}{\text{Liu, Neubert, Schnubel, Wang 22}}$

HH: EW Corrections

It is also interesting to explore the impact of EW corrections (in single Higgs for off-shell Higgs have $\pm 5\%$ impact) Actis, Passarino, Sturm, Uccirati 08

Richer structure in the SM and much richer structure in the context of EFT

Partial 2-loop EW corrections known:

Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao 18

Leading top-Yukawa contributions

(Small m_T) Davies, Mishima, Schönwald, Steinhauser, Zhang 22 + (EFT approach) Mühlleitner, Schlenk, Spira 22

Complete EW corrections will modify distributions and bounds in the SM & EFT frameworks

Summary

Great progress in theory precision over the last few years

Uncertainties beyond scale variations are becoming increasingly relevant

Still plenty to do if you are bored!

See: Les Houches Wishlist 21

Thank you for listening

process	known	desired
	N ³ LO _{HTL}	
$pp \to H$	$\mathrm{NNLO}_{\mathrm{QCD}}^{(t)}$	N^4LO_{HTL} (incl.)
	$\mathrm{N}^{(1,1)}\mathrm{LO}^{(\mathrm{HTL})}_{\mathrm{QCD}\otimes\mathrm{EW}}$	$\mathrm{NNLO}_\mathrm{QCD}^{(b,c)}$
	$\rm NLO_{QCD}$	
	$\mathrm{NNLO}_{\mathrm{HTL}}$	
$pp \to H+j$	$\rm NLO_{QCD}$	$\mathrm{NNLO}_{\mathrm{HTL}} \otimes \mathrm{NLO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{EW}}$
	$\rm N^{(1,1)}LO_{QCD\otimes EW}$	
	$\rm NLO_{\rm HTL} \otimes \rm LO_{\rm QCD}$	NNLO \otimes NLO $+$ NLO
$m \rightarrow H + 2i$	$ m N^{3}LO_{QCD}^{(VBF^{*})}$ (incl.)	$\mathbf{N}^{3}\mathbf{LO}_{\mathrm{HTL}} \otimes \mathbf{N}^{2}\mathbf{LO}_{\mathrm{QCD}} + \mathbf{N}^{2}\mathbf{LO}_{\mathrm{EW}}$
$pp \neq m \neq 2j$	$\mathrm{NNLO}_{\mathrm{QCD}}^{(\mathrm{VBF}^*)}$	$N LO_{QCD}$
	$\mathrm{NLO}_{\mathrm{EW}}^{(\mathrm{VBF})}$	NNLOQCD
$pp \rightarrow H + 3j$	$\mathrm{NLO}_{\mathrm{HTL}}$	
	$\mathrm{NLO}_{\mathrm{QCD}}^{\mathrm{(VBF)}}$	$NLO_{QCD} + NLO_{EW}$
$m \rightarrow VH$	$\mathrm{NNLO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{EW}}$	
$pp \rightarrow v \Pi$	$\text{NLO}_{gg \to HZ}^{(t,b)}$	
$pp \rightarrow VH + j$	$NNLO_{QCD}$	$NNLO_{OCD} + NLO_{DW}$
	$\rm NLO_{QCD} + \rm NLO_{EW}$	THEOGCD + HEOEW
$pp \to HH$	$\rm N^{3}LO_{HTL} \otimes \rm NLO_{QCD}$	$\rm NLO_{EW}$
	$N^{3}LO_{QCD}^{(VBF^{*})}$ (incl.)	
$pp \to HH + 2j$	$\mathrm{NNLO}_{\mathrm{QCD}}^{(\mathrm{VBF}^*)}$	
	$\mathrm{NLO}_{\mathrm{EW}}^{(\mathrm{VBF})}$	
$pp \rightarrow HHH$	NNLO _{HTL}	
$pp \to H + t\bar{t}$	$\rm NLO_{QCD} + \rm NLO_{EW}$	
	$\rm NNLO_{\rm QCD}$ (off-diag.)	ININLOQCD
$pp \to H + t/\bar{t}$	$\rm NLO_{QCD} + \rm NLO_{EW}$	NNLO _{QCD}

Backup

$gg \rightarrow ZH$: Real Emission Diagrams

There is some **freedom** regarding which real diagrams we include in gg vs $q\bar{q}$ Must be careful not to double count when combining all channels for $pp \rightarrow ZH$ Our reals are evaluated using **GoSam** Cullen et al. 11,14

Diagrams excluded in our work

Left class of diagrams: separately UV/IR finite & gauge invariant Previously studied in detail See e.g. Brein, Harlander, Wiesemann, Zirke 12

Right class of diagrams: belongs to real corrections to Drell-Yan (i.e. $q\bar{q}$) Included in DY calculations Brein, Djouadi, Harlander 03;

Ferrera, Grazzini, Tramontano 14; See also: Kumara, Mandal, Ravindran 14

HH: Mass Scheme Uncertainty

Combination of scale (μ_R , μ_F) and top mass scheme (OS / MS) studied Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 20

If we wish to take the **envelope** of the predictions as the uncertainty, then the two uncertainties should be added **linearly** (validated at NLO)

Scale (μ_R, μ_F)

$\kappa_{\lambda} = -10: \quad \sigma_{tot} = 1680^{+3.0\%}_{-7.7\%} \text{ fb}, \qquad \kappa_{\lambda} = -10: \quad \sigma_{tot} = 1438(1)^{+10\%}_{-6\%} \text{ fb},$ $\kappa_{\lambda} = -5: \quad \sigma_{tot} = 598.9^{+2.7\%}_{-7.5\%} \text{ fb}, \qquad \kappa_{\lambda} = -5: \quad \sigma_{tot} = 512.8(3)^{+10\%}_{-7\%} \text{ fb},$ $\kappa_{\lambda} = -1: \quad \sigma_{tot} = 131.9^{+2.5\%}_{-6.7\%} \text{ fb}, \qquad \kappa_{\lambda} = -1: \quad \sigma_{tot} = 113.66(7)^{+8\%}_{-9\%} \text{ fb},$ $\kappa_{\lambda} = 0: \quad \sigma_{tot} = 70.38^{+2.4\%}_{-6.1\%} \text{ fb}, \qquad \kappa_{\lambda} = 0: \quad \sigma_{tot} = 61.22(6)^{+6\%}_{-12\%} \text{ fb},$ $\begin{aligned} \kappa_{\lambda} &= 1: \quad \sigma_{tot} &= 31.05^{+2.2\%}_{-5.0\%} \text{ b}, \\ \kappa_{\lambda} &= 2: \quad \sigma_{tot} &= 13.81^{+2.1\%}_{-4.9\%} \text{ fb}, \end{aligned} \qquad \textbf{+} \qquad \begin{aligned} \kappa_{\lambda} &= 1: \quad \sigma_{tot} &= 27.73(7^{+4\%}_{-18\%} \text{ fb}, \\ \kappa_{\lambda} &= 2: \quad \sigma_{tot} &= 13.2(1)^{+1\%}_{-23\%} \text{ fb}, \end{aligned}$ $\kappa_{\lambda} = 2.4: \quad \sigma_{tot} = 13.10^{+2.3\%}_{-5.1\%} \text{ fb}, \qquad \kappa_{\lambda} = 2.4: \quad \sigma_{tot} = 12.7(1)^{+4\%}_{-22\%} \text{ fb},$ $\kappa_{\lambda} = 3: \quad \sigma_{tot} = 18.67^{+2.7\%}_{-7.3\%} \text{ fb}, \qquad \kappa_{\lambda} = 3: \quad \sigma_{tot} = 17.6(1)^{+9\%}_{-15\%} \text{ fb},$ $\kappa_{\lambda} = 5: \quad \sigma_{tot} = 94.82^{+4.9\%}_{-8.8\%} \text{ fb}, \qquad \kappa_{\lambda} = 5: \quad \sigma_{tot} = 83.2(3)^{+13\%}_{-4\%} \text{ fb},$ $\kappa_{\lambda} = 10: \quad \sigma_{tot} = 672.2^{+4.2\%}_{-8.5\%} \text{ fb} \qquad \kappa_{\lambda} = 10: \quad \sigma_{tot} = 579(1)^{+12\%}_{-4\%} \text{ fb}$

NLO Mass Scheme Unc.

Proposed Combination

$\kappa_{\lambda} = -10$:	σ_{tot}	=	$1680^{+13\%}_{-14\%}$ fb,
$\kappa_{\lambda} = -5:$	σ_{tot}	=	$598.9^{+13\%}_{-15\%}$ fb,
$\kappa_{\lambda} = -1:$	σ_{tot}	=	$131.9^{+11\%}_{-16\%}$ fb,
$\kappa_{\lambda} = 0$:	σ_{tot}	=	$70.38_{-18\%}^{+8\%}$ fb,
$\kappa_{\lambda} = 1$:	σ_{tot}	=	$31.05_{-23\%}^{+6\%}$ b,
$\kappa_{\lambda} = 2$:	σ_{tot}	=	$13.81_{-28\%}^{+3\%}$ fb,
$\kappa_{\lambda} = 2.4$:	σ_{tot}	=	$13.10^{+6\%}_{-27\%}$ fb,
$\kappa_{\lambda} = 3$:	σ_{tot}	=	$18.67^{+12\%}_{-22\%}$ fb,
$\kappa_{\lambda} = 5:$	σ_{tot}	=	94.82 ^{+18%} _{-13%} fb,
$\kappa_{\lambda} = 10$:	σ_{tot}	=	$672.2^{+16\%}_{-13\%}$ fb

@13 TeV

Tackling Mass Scheme Uncertainties

Low invariant mass:

expand in $1/m_t^2$ known to NNLO Grigo, Hoff, Steinhauser 15;

Around Peak: threshold expansion Gröber, Maier, Rauh 17

High energy:

small-*m*_t expansion known at NLO Davies, Mishima, Steinhauser, Wellmann 18, 19

Options:

1) Try to understand structure of mass logarithms

- 2) Keep calculating
- 3) Other ideas (?)