

Long-baseline neutrino oscillation program at Hyper-Kamiokande

Mark Scott

Imperial College London

Water Cherenkov detectors in Kamioka

3

Imperial College London

Hyper-Kamiokande Long-Baseline Physics

Water Cherenkov detectors in Kamioka

- Cherenkov ring from charged particles
- >99% μ/e separation
- Momentum and direction reconstruction

M radiation cone Vμ μ Muon Muon neutrino Ve Electron Electron neutrino shower

Cerenkov

Hyper-Kamiokande experiment

- Factor 20 increase in statistics compared to T2K:
 - Upgrade of the J-PARC neutrino beam to 1.3 MW
 - New far detector with 188kt fiducial volume
- New intermediate detector and inherited upgraded near detectors
- Improved photosensors with twice the quantum efficiency

Hyper-Kamiokande Long-Baseline Physics

Hyper-Kamiokande Long-Baseline Physics

Hyper-Kamiokande construction status

Mark Scott

Imperial College London

Hyper-Kamiokande schedule

- Excavation of access tunnels complete
- Excavation of cavern well on the way
- Optimising design of tank and PMT support structure
- Expect operation in 2027

Imperial College London

20-inch PMT production

- > 3700 PMTs / 20,000 delievered as of May 2022.
- <u>Constant quality inspection :</u> visual, measurements ...
- No delay so-far.

Hyper-Kamiokande Long-Baseline Physics

2

Neutrino oscillations

 Measure flavour composition of beam as function of L / E

$$P_{\alpha \to \beta} = \left| \sum_{i} U_{\alpha i}^* U_{\beta i} e^{-im_i^2 L/2E} \right|^2$$

• Compare neutrino beam and antineutrino beam to test CP symmetry

Neutrino oscillation formalism

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{c_{ij} = \cos \theta_{ij}}{s_{ij} = \sin \theta_{ij}}$$

• Three mixing angles, θ_{12} , θ_{23} and θ_{13}
$$\stackrel{\mathbf{Z}_{5 \times 10^{3} \text{ eV}^{2}}{}$$

- Two mass splittings, Δm_{12}^2 and Δm_{23}^2
- One CP-violating phase, δ_{CP}

Imperial College London

Neutrino oscillation formalism

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\overline{c_{ij} = \cos \theta_{ij}}_{s_{ij} = \sin \theta_{ij}}$$

$$\stackrel{Mass^{2}}{\underset{s_{ij} = \sin \theta_{ij}}{\overset{s_{ij} = \sin \theta_{ij}}}}}}$$

?

Normal

• Do neutrinos violate CP symmetry?

Inverted

cted Energy (

11

Hyper-Kamiokande electron-like event samples

 Use Super-K MC, scaled to HK volume and exposure

Imperial College

London

- Expect approx:
 - 2300 v_e events
 - 1900 $\bar{\nu}_e$ events
 - Assuming $\sin(\delta_{CP}) = 0$
- Difference between neutrino and antineutrino rates gives δ_{CP}

Number of Events

Number of Events

250

200

150

100

50

1200

1000

800

600

400

200

Long-Baseline Physics

Hyper-Kamiokande

Hyper-Kamiokande electron-like event samples

 Use Super-K MC, scaled to HK volume and exposure

Imperial College

London

- Expect approx:
 - 2300 v_e events
 - 1700 \bar{v}_e events
 - Assuming $\sin(\delta_{CP}) = 0$
- Expect approx:
 - 9300 ν_{μ} events
 - 12300 $\bar{\nu}_{\mu}$ events

Imperial College London HK Oscillation Analysis

Based on T2K analysis method

Hyper-Kamiokande Long-Baseline Physics

Systematic uncertainties

• High statistics experiment, limited by systematics

- NA61/SHINE thin-target hadron-production data
- J-PARC neutrino beamline uncertainties

- NEUT 5.4 and T2K 2018 uncertainty model as baseline (<u>Nature</u> volume 580, pages339–344(2020))
- Nucleon removal energy uncertainty included directly
- Use T2K near detector fit to provide initial constraint on model uncertainties
- Scale uncertainties to expected Hyper-K near detector performance

Hyper-Kamiokande Long-Baseline Physics

Lifting the $sin^2\theta_{23}$ degeneracy

- All analyses assume 10 years of HK data
 - 1:3 ratio of neutrino beam to antineutrino beam
 - Not including atmospheric neutrino sample
- Wrong octant exclusion versus true value of $\sin^2 \theta_{23}$
- Estimated systematic uncertainty on muon sample reduced from 4.6% to 1.9% with improved near detectors
- Achieve 3σ exclusion for:
 - $-\sin^2\theta_{23} < 0.47$
 - $-\sin^2\theta_{23} > 0.55$

Imperial College London

CP violation sensitivity

HK 10 years (2.70E22 POT 1:3 v:v) Ability to exclude $(\sqrt{\Delta\chi^2})$ **CP** conservation 16 Statistics only Improved syst. (v_e/\overline{v}_e xsec. error 2.7%) versus true value 14 T2K 2018 syst. (v_e/\overline{v}_e xsec. error 4.9%) of δ_{CP} $\sin(\delta_{CP}) = 0$ exclusion 12 10 8 6 3σ -2 2 Hyper-K preliminary True δ_{CP} True normal ordering (known) $\sin^2(\theta_{13}) = 0.0218 \sin^2(\theta_{23}) = 0.528 |\Delta m_{32}^2| = 2.509\text{E-3 eV}^2/c^4$

Imperial College London

CP violation sensitivity

Imperial College London

CP violation sensitivity

HK 10 years (2.70E22 POT 1:3 v:v) Ability to exclude $V\Delta\chi^2$ **CP** conservation 16 Statistics only Improved syst. (v_e/\overline{v}_e xsec. error 2.7%) versus true value 14 T2K 2018 syst. (v_e/\overline{v}_e xsec. error 4.9%) of δ_{CP} $sin(\delta_{CP}) = 0$ exclusion 12 Large electron-like 10 samples provide 8 high statistics 6 Limited by 4 3σ systematics _2 2 Hyper-K preliminary True δ_{CP} True normal ordering (known) $\sin^2(\theta_{13}) = 0.0218 \sin^2(\theta_{23}) = 0.528 |\Delta m_{32}^2| = 2.509\text{E-3 eV}^2/c^4$

Imperial College London

CP violation sensitivity

HK 10 years (2.70E22 POT 1:3 $v:\bar{v}$) Ability to exclude $V\Delta\chi^2$ **CP** conservation 16 Statistics only Improved syst. (v_e/\overline{v}_e xsec. error 2.7%) versus true value 14 T2K 2018 syst. ($v_{\rho}/\overline{v}_{\rho}$ xsec. error 4.9%) of δ_{CP} = 0 exclusion12 Large electron-like 10 samples provide 8 high statistics 6 $sin(\delta_{CP})$ Limited by 30 systematics Can exclude _? 2 ~60% of true δ_{CP} Hyper-K preliminary True δ_{CP} True normal ordering (known) values at 5σ $\sin^2(\theta_{13}) = 0.0218 \sin^2(\theta_{23}) = 0.528 |\Delta m_{32}^2| = 2.509\text{E-3 eV}^2/c^4$

CP violation sensitivity over time

Percentage of true δ_{CP} values where CP conservation can be excluded as a function of running year

CP violation sensitivity over time

- Percentage of true
 δ_{CP} values where
 CP conservation
 can be excluded
 as a function of
 running year
- Can achieve 3σ CP violation result over significant regions of δ_{CP} after 2 years operation

CPV and systematic uncertainties

Imperial College London

Precision measurement of δ_{CP}

Imperial College London

Precision for $sin^2\theta_{23}$

- Precision depends on true value
- Systematics limited result
- Can achieve 3.6% uncertainty at $\sin^2 \theta_{23} = 0.5$
- Better than 1% uncertainty for $\sin^2 \theta_{23} < 0.45$ and $\sin^2 \theta_{23} > 0.55$

Event "feed-down"

- Reconstructed neutrino energy under-estimates true neutrino energy
 - WC threshold
 - Neutrons in LAr
- Events at higher true energies appear as lower energy (blue – purple histograms on left)
- Can bias or introduce error to oscillation measurements

Atmospheric neutrinos

- Atmospheric neutrinos have longer baseline and higher energies gives sensitivity to neutrino mass ordering
- Mass hierarchy determined with upward-going multi-GeV ν_e sample: atm. baseline ≤ 13000 km ≫ 295 km accelerator baseline

Atmospheric neutrinos and CPV

- If MO unknown, beam analysis less sensitive for some values of δ_{CP}
- Joint atmospheric and beam analysis restores sensitivity above 5*o*
- Slight improvement in region of δ_{CP} space that can be excluded at 5σ

Mass hierarchy determination

• Can exclude incorrect mass ordering at $4 - 6\sigma$ significance (depending on value of $\sin^2\theta_{23}$)

Intermediate Water Cherenkov Detector (IWCD)

- Approx. 300-tonne water Cherenkov detector located ~1km from beam production point
- Movable to different off-axis angles

Off-axis concept

- Measure neutrino interactions at multiple off-axis positions
- Neutrino flux changes with position

v beam

IWCD Physics

Hyper-Kamiokande Long-Baseline Physics

- Can combine different off-axis positions to create new flux shapes Gaussian on left
 - Look at reconstructed energy to directly measure feed-down
- Will also have large electron neutrino sample constrain $(v_e)/(\bar{v}_e)$ to < 4%

Summary

- After 10 years data taking Hyper-Kamiokande will:
 - Exclude CP conservation at 5σ for 60% of δ_{CP} parameter space
 - Reach 4 6σ exclusion of the wrong mass ordering
 - Achieve 3σ exclusion of wrong octant for $\sin^2\theta_{23} < 0.47$ and $\sin^2\theta_{23} > 0.55$
 - Achieve between 19° 7° precision on δ_{CP}
 - Achieve 3.6% precision or better on $\sin^2\theta_{23}$
- Large statistics for long-baseline and atmospheric neutrinos
 - Understanding systematics and reducing them is key challenge
 - $(v_e)/(\bar{v}_e)$ uncertainty and "feed-down" of high energy events are significant challenges
 - Reducing uncertainties in neutrino flux prediction and detector performance also necessary

Supplementary slides

Imperial College London

Hyper-Kamiokande electron-like sample breakdown

- A sample of CC-1 π events is included from the neutrino beam data
- The sample selects single-ring, electron-like events with the presence of a Michel electron tagging a pion below Cherenkov threshold
- The energy of this sample is calculated assuming a Δ_{1232} resonance

Imperial College London

Hyper-Kamiokande sample breakdown

- Antineutrino beam:
 - Larger "wrongsign" component
 - Larger neutral current component due to increased exposure

Number of Events

- Expect approx:
 - 9300 v_{μ} events
 - 12300 $\bar{\nu}_{\mu}$ events

Imperial College London

Oscillation analysis fit

- Simultaneous likelihood fit of electron-like and muon-like samples at HK
- Profile systematics and oscillation parameters
- Fit electron-like samples in 2D (reconstructed energy vs lepton angle relative to the beam)
- Muon-like samples fit in 1D as function of reconstructed neutrino energy (assuming CCQE kinematics)
- Include flux and cross-section uncertainties using T2K 2018 near detector fit results
- Far detector uncertainties based on 2018 Super-K systematics

Scaled HK systematics

- Scale uncertainty on flux, cross-section and SK detector systematics by $1/\sqrt{N}$, where N = 8.7 is the relative increase in neutrino beam exposure from T2K to Hyper-K
- Studies from the ND280 Upgrade group (see talk #392 by D. Sgalaberna) and the HK Intermediate Water Cherenkov Detector were used to apply a further constraint to the cross-section model uncertainties:
 - A factor of 3 reduction on all non-quasi-elastic uncertainties
 - A factor of 2.5 reduction on all quasi-elastic uncertainties
 - A factor 2 reduction on all anti-neutrino uncertainties
 - A reduction in neutral current uncertainties to the ~10% level
- The electron neutrino / electron antineutrino cross-section ratio error was varied from ~3.6% to 1% to assess its impact
- No parameter was allowed to have an uncertainty of less than 1%

Uncertainty on event samples

T2K 2018 uncertainties on the HK event samples

	1-ring μ -like		1-ring e-like			
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode 0 d.e.	$\bar{\nu}$ -mode 0 d.e.	ν -mode 1 d.e.	ν -mode/ $\bar{\nu}$ -mode 0 d.e.
Cross section	4.77%	4.02%	5.61%	5.09%	5.05%	4.24%
Flux	4.28%	4.12%	4.38%	4.26%	4.46%	2.07%
Flux + xsec	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%
Detector+FSI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%
All syst	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%

Table 6: Percentage error on event rate by error source and sample, for the T2K-2018 syst error model.

Scaled HK uncertainties, with a 3.6% error on the electron neutrino/antineutrino cross-section

	1-ring μ -like		1-ring e-like				
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode 0 d.e.	$\bar{\nu}$ -mode 0 d.e.	ν -mode 1 d.e.	ν -mode/ $\bar{\nu}$ -mode 0 d.e.	
Cross section	0.92%	0.77%	3.43%	2.62%	3.43%	3.72%	
Flux	0.85%	0.80%	0.87%	0.83%	0.89%	0.51%	
Flux + xsec	0.82%	0.72%	3.44%	2.62%	3.51%	3.76%	
Detector+FSI	1.69%	1.59%	1.54%	1.72%	5.22%	0.95%	
All syst	1.88%	1.74%	3.75%	3.12%	6.24%	3.88%	

Table 8: Percentage error on event rate by error source and sample, for the HK 3.6% error model.

Event number variations with δ_{CP}

	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = \pi$
ν -mode beam 1-ring μ -like	9349.30	9335.51	9348.29	9365.49
$\bar{\nu}$ -mode beam 1-ring μ -like	12375.02	12344.43	12375.21	12408.46
ν -mode beam 1-ring e -like + 0 decay e	2739.76	2285.17	1845.99	2300.57
$\bar{\nu}$ -mode beam 1-ring e-like + 0 decay e	1623.97	1883.40	2117.98	1858.56
ν -mode beam 1-ring e -like + 1 decay e	257.63	223.18	179.45	213.91

Parameter(s)	AsimovA-2020
$\sin^2 heta_{23}$	0.528
$\sin^2 heta_{13}$	$0.0218{\pm}0.0007$
$\sin^2 heta_{12}$	0.307
$ \Delta m_{32}^2 $ (NH) / $ \Delta m_{13}^2 $ (IH)	$2.509 \times 10^{-3} \text{ eV}^2/\text{c}^4$
Δm^2_{21}	$7.53 imes 10^{-5} \ { m eV^2/c^4}$
δ_{CP}	-1.601
Mass Hierarchy	Normal

CPV sensitivity over time

