Electron nuclear scattering measurements for neutrino physics

Dan Watts Nuclear physics group University of York

Outline

- Electrons4neutrinos@CLAS(JLAB)
- Weak form factors of heavy nuclei
- Nuclear spin polarized media

Neutrino detection via neutrino-nucleus reactions

 $|N(E_{rec}, L) = \sum_{i} \int \Phi(E, L) \times \sigma_{i}(E) f_{\sigma_{i}}(E, E_{rec}) dE$

Nuclear physics – a large systematic for DUNE

$$P_{\nu_{\alpha} \to \nu_{\beta}}(E_{\text{true}}, L) \approx \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{E_{\text{true}}}\right)$$

UNIVERSITY of York

It is getting messy!

Many resonances Many decay modes Medium modifications poorly established (mass, width) Axial form factors for resonance excitation.. A challenge!

e4nu

Quasi-Elastic scattering off nuclei similar with both electrons and neutrinos

Beam energy accurately known

Monoenergetic

High intensity -> many final states

Large interdisciplinary team of theorists and experimentalists

ODU, JLAB, FNAL, LBNL, MIT, Tel Aviv, MSU, Rutgers, Oxford, Edinburgh, Pittsburgh, Texas (Arlington), William and Mary, York

Resonance production from electrons also similar to that from neutrinos

Jefferson Lab

NIM A, 503(3), 2003

CLAS12

NIM A, 967, 163898 (2020)

More nuclei (D,Ca,Ar,Sn), E_e=1,2,4,6 GeV. Smaller scattering angles, wider range of q <u>Calibrations</u> <u>almost</u> complete

E4nu: CLAS6 1p0 π data

Ref: Khachatryan, M., Papadopoulou, A., Ashkenazi, A. et al. Nature 599, 565–570 (2021). https://doi.org/10.1038/s41586-021-04046-5

UNIVERSITY of York

E4nu: CLAS6 1p0 π data

Ref: Khachatryan, M., Papadopoulou, A., Ashkenazi, A. et al. Nature 599, 565–570 (2021). https://doi.org/10.1038/s41586-021-04046-5

E4nu: CLAS6 1p1 π data

Resonance production from electrons also similar to that from neutrinos

Idea: Use electron scattering data to study electron-nucleon interactions and inform models of neutrino-nucleon interactions!

UNIVERSITY

Left: Data, Right: GENIE MC Black: $\geq 1p \geq 1\pi$ Events, Red: $1p1\pi$ Events, Green: Subtracted Spectrum

Fegan (York); Hand, Weinstein (ODU)

E4nu: CLAS6 1p1 π data

³He, ⁴He, ¹²C, ⁵⁶Fe,

Fegan (York); Hand, weinstein (ODU)

E4nu – Start of the CLAS12 era

e4nu@CLAS12 – Liquid argon target

e4nu@CLAS12 – ⁴He target

, mk

Other topics of potential interest

Neutron skins and Weak nuclear form factor

	proton	neutron
Electric charge	1	0
Weak charge	0.08	1

ARTICLES https://doi.org/10.1038/s41567-022-01715-8

nature physics

Check for updates

OPEN Ab initio predictions link the neutron skin of ²⁰⁸Pb to nuclear forces

Baishan Hu^[0]1,1], Weiguang Jiang^{[0]2,11}, Takayuki Miyagi^{[0]1,3,4,11}, Zhonghao Sun^{5,6,11}, Andreas Ekström², Christian Forssén^{© 2 ⊠}, Gaute Hagen^{© 1,5,6}, Jason D. Holt^{© 1,7}, Thomas Papenbrock^{© 5,6}, S. Ragnar Stroberg^{8,9} and Ian Vernon¹⁰

Parity violating electron scattering (Neutral current)

Coherent scattering from nucleus

-> Weak form factor

"accurate" measurement of neutron distribution

Weak mixing angle 1.2σ smaller than SM? (low energy value not well constrained) PRC 105 055503 (2022)

UNIVERSITY OF

Chemical hyperpolarisation

Traditional polarized nucleon targets

- Dynamic nuclear polarisation Radicals in target medium (e.g butanol) polarised in strong field (5T), transferred to the nucleons
- Requires cryogenics (mK), holding coils, ...
 -> VERY sensitive to temperature changes
 -> Polarisation lost with electron beams at modest intensities
- Can we develop a new technology?
- Active polarised targets?

Chemical hyperpolarisation

- Utilises a catalyst to transfer nuclear spin order from parahydrogen (singlet state of H₂) to target nuclei (¹H) by transiently binding the target substrate. Also D, ¹³C, ¹⁵N etc.)
- Room temperature, ~insensitive to <10° temp changes, fraction polarised nuclei comparable with DNP (Butanol), aligns with weak applied field
- York (Physics/Chemistry) leading new R&D to optimise substrates and catalysts to scale the technology from sub mm³ used in medical research -> cm³ needed for viable target
- cm³ seems feasible with off the shelf para-H2 generator
- Cerenkov & scintillation light from cosmics observed from various substrates active target possible

pH₂ spin configuration

SABRE spin transfer

Tests in beam of hyperpolarised cell

- First in beam tests planned later this year (Mainz)
- Test resilience of polarisation to radiation dose and heat deposition
- >cm^3 ? to be explored in R&D programme

Thanks for listening !

daniel.watts@york.ac.uk

