Strangeness Production

Christopher Thorpe

How do we get strange particles, and what measurements are there? Why are such processes interesting/important?

2 A little of what we learned from MicroBooNE.

3 Why might we see in NuSTORM?

Where Do Strange Particles Come From?

Christopher Thorpe

6th April 2023 2 / 42

Strangeness Production Processes

Interactions can be broadly separated into four categories:

- **1** CCQE-like hyperon production.
- 2 Renonant hyperon/kaon production, with non resonant background.
- **3** Deep inelastic scattering.
- 4 Coherent kaon production.

CCQE-like Hyperon Production

• $\Delta S = 1$ counterpart to CCQE. Three processes for free nucleons:

$$\bar{\nu}_l + \rho \to l^+ + \Lambda^0 \tag{1}$$

$$ar{
u}_l + oldsymbol{
ho} o l^+ + \Sigma^0$$
 (2)

$$\bar{\nu}_l + n \rightarrow l^+ + \Sigma^-$$
 (3)

Anti-neutrinos only.

- Llewelyn-Smith formalism, with different form factors obtained through SU(3) flavour relations.
- Generic notation: *N* is a nucleon, *Y* is a hyperon, eg.

$$ar{
u}_l + N
ightarrow l^+ + Y$$

Christopher Thorpe

(4)

CCQE-like Hyperon Production and *M*_A

NuWro calculations of total cross sections from [1].

 Interesting observation: Λ and Σ cross sections have different dependencies on *M_A*.

 Measuring multiple channels helps disambiguate M_A from other effects.

CCQE-like Hyperon Production and SCC

- Possible non-zero second class current in some β decays [2], and decays of Ξ baryons [3].
- Polarisation of hyperons extremely sensitive to T violating currents.

Transverse polariation of Λ for different T-violating SCC calculated in [4]. Solid line is without SCC, dashed lines with SCC.

Existing Measurements

I can summarize the entire dataset with the following three plots...

Bubble Chamber Cross Sections

Entire set of published measurements of CCQE-like Λ and Σ^0 production, all from bubble chambers. Data from [5-10]. Figs. from [1]

Christopher Thorpe

Strangeness Production

The MicroBooNE Measurement

Partial phase space cross section for $\bar{\nu}_{\mu} + Ar \rightarrow \Lambda + \mu^+$ measured by MicroBooNE [11]. First hyperon cross section from a modern detector. Limited by statistics. More on this later.

RES Hyperon Production

Excite a resonance that decays into some strange particles. If $W > M_{\Lambda} + M_{K}$ the associated channels become available, eg:

$$\nu_l + N \to l^- + N^* \to l^- + \Lambda + K^+ \tag{5}$$

• Or, through a $\Delta S = 1$ process such as:

$$\bar{\nu}_l + N \rightarrow l^+ + \Sigma^{0*} \rightarrow l^+ + \Lambda + \pi^0$$
 (6)

- GENIE models these with the Rein-Sehgal/Berger-Sehgal models.
- Like CCQE hyperon production, get cross section through symmetries.

Non-RES Background

Can get the same final states through non-resonant diagrams such as these [12]:

Non-RES Background

- GENIE modeling approach is to extrapolate the DIS model to lower invariant masses, and fit the combined RES + extended DIS to data.
- No hyperon/kaon DIS data to tune to.
- Some other calculations, such as [12] by Fatima, Sajjad Athar, and Singh, use analytical treatment. Non-res contribution is very large.
- $M_{\Lambda} + M_{K} \sim 1.6$ GeV. Probe the RES/DIS boundary with a final state that's hard to mimic with other channels.

Cross section for $\nu_{\mu} + n \rightarrow \mu^{-} + \Lambda + K$ from [12].

DIS Hyperon Production

- $\Delta S = 0$ process: promote an $s\bar{s}$ pair from the quark sea. These hadronise into hyperon and kaon.
- $\Delta S = 1$ process: convert a *u* quark to an *s* quark. Produces a hyperon or kaon. Again, anti-neutrinos only.
- Cross sections calculated in the same manner a other DIS processes: parton distribution functions and hardronisation routines.
- Main generators outsource the hadronisation to Pythia.
- NOMAD [13, 14] looked at ∧ polarisation; no cross section measurements.

Coherent Kaon Production

- Observed by MINERvA a few years ago [15]. Found 6 candidates.
- Dangerous background in nucleon decay measurements.
- Kaon KE from proton decay peaks ~ 100 MeV, below MINERvA predicted events to be. Observed one event around here.

Kaon Production in MINERvA

- Only kaon production measurement is from MINERvA.
- Inclusive K^+ production.
- Found good shape agreement with MC, but small tension in normalisation [16], approx 15%.

Final State Interactions (FSI)

- A lot of the interesting effects in hyperon production appear when FSI gets involved.
- GENIE hA/hN modes provide FSI for Kaons, but not hyperons. NuWro has FSI for hyperons but not kaons.
- The Geant Bertini cascade, which can now be run as an FSI simulation in GENIE, can do both.
- Understanding the propagation of kaons through nuclear matter is important in proton decay.

Hyperons and FSI

- Several calculations predict FSI to have a very large impact on the hyperon cross sections, especially at low energies.
- Some $N + Y \rightarrow N + Y$ data available, FSI cross sections fitted to this.
- Little data available on pion production N + Y → N + Y + π or kaon production N + Y → N + N + K. Generators don't simulate these.

Sigma production suppressed by FSI at low Q^2 . NuWro calculation from [1].

Hyperons and FSI

- The Σ⁺ only gets produced in the CCQE-like interaction if FSI is involved.
- Predicted cross section ~ 1/10 that of other channels.

The Hyperon Puzzle

- Attempts to model the creation of hyperons in large neutron stars obtain an upper limit on their masses of 1.4 M_☉.
- This conflicts with astronomical data.
- Density at which they appear depends on strength of their interaction with the nuclear medium.

Predicted masses of neutron star with and without hyperons from [17].

Hypernuclear Potentials

- Some calculations include hyperon-nucleus potentials [18].
- Only major generator to include them is NuWro.
- Σ-nucleus potential from K(A,A')Σ scattering data yields very large range of strengths, both attractive and repulsive.
- Calculations of the A potential are a little better.

Fit of Σ -nucleus potential strength (V_0^{Σ}) from [19].

Hypernuclear Potentials

NuWro calculation of cross section at extremes of allowed values shows significant variation in size and shape of cross sections. Figs. from [1]. Sign convention opposite to previous slide - $\alpha < 0$ is repulsive.

Hypernuclear Potentials

NuWro calculation of cross section at extremes of allowed values shows significant variation in size and shape of cross sections. Figs. from Ref. [1].

Kaon FSI

Kinetic energies of kaons from $p \rightarrow \nu + K$, with kaon rescattering simulated with hA2018 [20].

- Predicted to shift kaons to lower energies without affecting normalisation.
- GENIE simulates FSI with one of two models: hA and hN, both data driven.

Models/Measurements Summary

Almost no data to go on, much of it from decades ago. All very statistics limited.

■ Unique nuclear and nucleon cross section effects.

Can compliment measurements outside strange sector.

- Multiple channels: use to disambiguate different physics effects.
- New probe or RES/DIS transition that's harder for other interactions such as CCQE to mimic.

The MicroBooNE Measurement

- Measure CCQE-like Λ channel.
- Flux averaged total cross section, with NuMI flux.
- Combine ν and $\overline{\nu}$ mode data.
- Look for $\Lambda \rightarrow \rho + \pi^-$. BF = 68%.
- Signature is displaced V. Any future measurements will require a detector with tracking with ~ cm level resolution.

One of the A candidates found in MicroBooNE's data.

Threshold Effects

- MicroBooNE cannot see protons and pions with momentum < 0.3 GeV and < 0.1 GeV respectively.</p>
- In MicroBooNE we calculated the fraction of As that could decay this way.
- As below 0.3 GeV invisible.
- Dedicated reconstruction algorithm remains on the wishlist.

Fraction of $\Lambda \rightarrow \rho + \pi^-$ decays visible in MicroBooNE.

Background

- Event selection targets CCQE channel, with some contamination from other Λ sources such as RES/DIS.
- These sources of background can be eliminated with better control of flux shape, demonstrate in a few slides...

Invariant mass distribution predicted by MC. Green is CCQE-like Λ signal.

Rudimentary Studies with the NuTORM Fluxes

- Paul Kyberd very kindly provided me with the fluxes.
- Disclaimer: I am not a NuSTORM collaborator, these are studies I decided to perform on my own using the fluxes.
- Nothing on the following slides is official NuSTORM material in any capacity.

Rudimentary Studies with the NuSTORM Fluxes

- These are some early studies I have performed with NuWro, this is the generator I am the most familiar with.
- I wasn't able to prepare GENIE samples of sufficient statistics in time.
- I think a comparison of the two generators would be interesting given their radically different approaches to RES/DIS modeling.

Which Flux?

- We can produce different flux shape by tuning the energy of the pions.
- CCQE/RES/DIS processes will dominate at different energies.

π Energy Dependence

- Associated $\Lambda + K$ cross section very small when $E_{\pi} = 2$ GeV.
- Clean place to study the CCQE-like hyperon production channels.

Simulating ν_{μ} and $\bar{\nu}_{\mu}$ on argon with NuWro.

Statistics?

Expect a few events per tonne of active material per 10²⁰ POT. Need to run on the higher energies to get many kaons.

What's Visible?

Calculate the momentum distribution of the Λ s, and Λ s from Σ^0 decay. Compare to LArTPC detection threshold of 0.3 GeV.

Most of the distribution is above detection threshold.

Christopher Thorpe

Strangeness Production

What's Visible?

Similarly, we can look at charged kaons. Detection threshold in a LArTPC is about 0.3 GeV.

Most of the distribution is above detection threshold.

Christopher Thorpe

Could We See the Σ -Nucleus Potential?

What effects do the hypernuclear potentials have?

Figure: Σ potential pushes peak to the right. Need enough statistics to do a two bin measurement though.

Christopher Thorpe

Strangeness Production

What About *M_A*?

Other Analysis Ideas

■ Use a hydrocarbon target: measure the free proton cross section in the same vein as the recent MINERvA nature paper. Could be cleaner as the ∧ decays with predictable kinematics; don't have to rely on neutrons.

Way too many plots to add to this talk, get in touch if you fancy a look...

- Not much understood about strangeness production in any channel. Next to no data to go on.
- Sensitive to lots of unique nuclear effects, and can nicely compliment measurements of M_A and other physics effects from the non-strange channels.

- Expect a few events per tonne per 10²⁰ POT with the NuSTORM fluxes with current EG modeling.
- Large benefit I can see from NuSTORM is the ability to separate the CCQE-like channel from the others thanks to better control over the shape of the flux.
- Still expecting measurements to be quite statistically limited.
- Low threshold detection technology preferable, but not essential.

References I

- [1] C. Thorpe, J. Nowak, K. Niewczas, J. T. Sobczyk and C. Juszczak, Phys. Rev. C 104 (2021) no.3, 035502
- K. Minanisono, T. Yamaguchi, K. Matsuta, T. Minamisono, T. Ikeda, Y. Muramoto, M. Fukuda, Y. Nojiri, A. Kitagawa and K. Koshigiri, *et al.* Nucl. Phys. A 654 (1999) no.1, 955c-960c
- [3] A. Alavi-Harati et al. [KTeV], Phys. Rev. Lett. 87 (2001), 132001
- [4] A. Fatima, M. Sajjad Athar and S. K. Singh, Phys. Rev. D 98 (2018) no.3, 033005.
- [5] O. Erriquez et al., Nucl. Phys. B 140 (1978) 123.
- [6] O. Erriquez et al. Phys. Lett. B 70 (1977) 383.
- [7] T. Eichten et al., Phys. Lett. 40B, 593 (1972).
- [8] J. Brunner et al. [SKAT Collaboration], Z. Phys. C 45 (1990) 551.

References II

- [9] V. V. Ammosov et al., Z. Phys. C 36, 377 (1987).
- [10] G. Fanourakis et al., Phys. Rev. D 21, 562 (1980)
- [11] P. Abratenko et al. [MicroBooNE], [arXiv:2212.07888 [hep-ex]].
- [12] M. Sajjad Athar, A. Fatima and S. K. Singh, Prog. Part. Nucl. Phys. 129 (2023), 104019
- [13] D. Naumov et al. [NOMAD], Nucl. Phys. B 700 (2004), 51-68
- [14] P. Astier et al. [NOMAD], Nucl. Phys. B 621 (2002), 3-34
- [15] Z. Wang et al. [MINERvA], Phys. Rev. Lett. 117 (2016) no.6, 061802
- [16] C. M. Marshall et al. [MINERvA], Phys. Rev. D 94 (2016) no.1, 012002
- [17] I. Vidaña, EPJ Web Conf. 271 (2022), 09001

References III

- [18] J. E. Sobczyk, N. Rocco, A. Lovato and J. Nieves, Phys. Rev. C 99 (2019) no.6, 065503
- [19] P. K. Saha et al., Phys. Rev. C 70 (2004), 044613
- [20] B. Abi et al. [DUNE], Eur. Phys. J. C 81 (2021) no.4, 322
- [21] M. Rafi Alam et al., AIP Conf. Proc. 1663 (2015) no.1, 070004