The search for new physics in $B \rightarrow K \ell^{+} \ell^{-}$and $B \rightarrow K \nu \bar{\nu}$ using precise lattice QCD form factors

William Parrott
parrott@yorku.ca

York University

MPQQP
C. Bouchard, C.T.H. Davies

Overview

- Based on 2207.12468, 2207.13371
- $B \rightarrow K$ motivation
- Calculation of hadronic form factors on the lattice
- Studying $B \rightarrow K$ using heavy-HISQ
- Results:

$B \rightarrow K$ form factors and phenomenology
- Subsequent work

$B \rightarrow K$ motivation

- Rare flavour changing neutral currents require loops
- Highly suppressed in the SM
- A good place to look for new physics
- We need very precise theoretical and experimental determinations to test SM.
- Theory requires precise form factors for the hadronic part of the decay, which we calculate on the lattice

$$
\frac{d \Gamma^{D \rightarrow K}}{d q^{2}}=\frac{G_{F}^{2}\left|V_{c s}\right|^{2}}{24 \pi^{3}}\left|\vec{p}_{K}\right|^{3}\left|f_{+}\left(\underset{q^{2}}{\leftarrow}\right)\right|^{2}
$$

- Parameterise the 'QCD bit' in a differential decay rate
- Interested in $f_{0}\left(q^{2}\right), f_{+}\left(q^{2}\right)$ and $f_{T}\left(q^{2}\right)$ form factors for $B \rightarrow K$.
- Encode meson structure and describe the shape in $q^{2}=\left(p_{\text {mother }}-p_{\text {daughter }}\right)^{2}$ space.
- Form factors are constructed from three-point functions calculated on the lattice.

Form factors on the lattice

- Problem: QCD non-perturbative at low energies.

- Need to solve path integral. Discretise Euclidean action on a 4D lattice of space-time points with spacing a.
- Many discretisations of the action exist. We use a highly improved (HISQ) action for all quarks. This removes effects associated with the naive discretisation process through order a^{2}.
- Calculate correlation functions by inserting operators and performing Monte Carlo integration. For QCD we must integrate over quark and gluon fields.
- Repeat for many a values and extrapolate to continuum $(a=0)$.

$$
\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A e^{-S[\bar{\psi}, \psi, A]}
$$

Form factors on the lattice

We can calculate two and three point functions to study meson masses and decays from first principles, but with some limitations:

- The computational cost of calculations is very large. This grows quickly with lighter masses and finer lattices.
- For $B \rightarrow K$ we need to include ensembles with physical light quark masses.
- We also need fine lattices for $a m_{b} \leq 0.8$. Not achievable on most ensembles.
- Want meson form factors over the full range of q^{2} values.
- f_{0}, f_{+}and f_{T} form factors use matrix elements from 3-point correlation functions with scalar, vector and tensor current insertions.
- We fit the time dependence to extract matrix elements from correlators.

Moving to $B \rightarrow K$

Heavy-HISQ:

- Proceed for $H \rightarrow K$ using
'heavy' mass m_{h}.
- $a m_{c} \leq a m_{h} \leq 0.8$ on each ensemble.

- $f_{0} \& f_{+}$non-pert.
normalised. For f_{T}, use normalisation from [2008.02024].
- Use 5 lattice spacings with 3 physical m_{l} ensembles.
- First fully relativistic calculation - all HISQ quarks.

Moving to $B \rightarrow K$

Convert to z space and extrapolate in heavy mass too:

$$
f_{0}\left(q^{2}\right)=\frac{1+L}{1-\frac{q^{2}}{M_{H_{s 0}^{*}}^{2}}} \sum_{n=0}^{N-1} a_{n}^{0} z^{n}
$$

$$
f_{+, T}\left(q^{2}\right)=\frac{1+L}{1-\frac{q^{2}}{M_{H_{s}^{*}}^{2}}} \sum_{n=0}^{N-1} a_{n}^{+, T}\left(z^{n}-\frac{n}{N}(-1)^{n-N} z^{N}\right)
$$

$$
a_{n}^{0,+, T}=\left(\frac{M_{D}}{M_{H}}\right)^{\zeta_{n}}\left(1+\rho_{n}^{0,+, T} \log \left(\frac{M_{H}}{M_{D}}\right)\right)\left(1+\mathcal{N}_{n}^{0,+, T}\right) \times
$$

$$
\sum_{i, j, k, l=0}^{N_{i j k l}-1} d_{i j k l n}^{0,+T}\left(\frac{\Lambda_{\mathrm{QCD}}}{M_{H}}\right)^{i}\left(\frac{a m_{h}^{\mathrm{val}}}{\pi}\right)^{2 j}\left(\frac{a \Lambda_{\mathrm{QCD}}}{\pi}\right)^{2 k}\left(x_{\pi}-x_{\pi}^{\mathrm{phys}}\right)^{l}
$$

$B \rightarrow K$ form factors

The z expansion is well behaved in all cases.

$B \rightarrow K$ form factors

Evaluate at the continuum, physical point and B mass to give precise form factors across whole q^{2} range.

$B \rightarrow K$ form factors

Heavy-HISQ fits behaviour in M_{H} at fixed q^{2}. Improvements in precision, particularly at low q^{2}.

$B \rightarrow K \ell^{+} \ell^{-}$phenomenology

As with $D \rightarrow K$ (above) we can use the form factors to get at the differential decay rate for $B \rightarrow K \ell^{+} \ell^{-}$:

$$
\frac{d \Gamma^{B \rightarrow K \ell^{+} \ell^{-}}}{d q^{2}}=\mathcal{F}\left(q^{2}, f_{0}, f_{+}, f_{T}, W_{i}\right)
$$

where W_{i} are Wilson coefficients and \mathcal{F} is a complicated function (see e.g. arXiv 1510.02349). Does not account for $c \bar{c}$ resonances. We can compare this with experiment, in differential form and integrate to get $\mathcal{B}=\Gamma \tau_{B}$.

$B \rightarrow K \ell^{+} \ell^{-}$phenomenology

We can compare the differential branching fraction with binned experimental data.

$B \rightarrow K \ell^{+} \ell^{-}$phenomenology

Can also integrate across the whole q^{2} range to get the branching fraction. Vetoed region contributes $\approx 15 \%$.

$B \rightarrow K \ell^{+} \ell^{-}$

We find large tensions in the theoretically clean regions of q^{2} :
$1.1-6 \mathrm{GeV}^{2}$ and $15-22 \mathrm{GeV}^{2}$.

$B \rightarrow K \nu \bar{\nu}$ phenomenology

$$
\frac{d \mathcal{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SD}}}{d q^{2}}=\frac{G_{F}^{2} \alpha_{\mathrm{EW}}^{2} X_{t}^{2}}{32 \pi^{5} \sin ^{4} \theta_{W}} \tau_{B}\left|V_{t b} V_{t s}^{*}\right|^{2}\left|\vec{p}_{K}\right|^{3} f_{+}^{2}\left(q^{2}\right)
$$

$B \rightarrow K \nu \bar{\nu}$ phenomenology

Subsequent work on $B \rightarrow K \ell^{+} \ell^{-}$

Looking at the tension in $\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)_{[1.1,6]} \mathrm{GeV}^{2}$ Subsequent work [A. Buras 2209.03968] uses NP clean ratios of $\Delta F=2$ observables and our form factors - tension persists at a level of 5.1σ. Other work [R. Fleischer et al. 2212.09575] looked at the effect of inclusive vs exclusive $\left|V_{t s} V_{t b}\right|$ values, using our ffs. Found 3.5σ tension for hybrid inclusive (ex. $\left|V_{u b}\right|$ and inc. $\left.\left|V_{c b}\right|\right)$ and 2.4σ for the exclusive. We used a value close to their hybrid inclusive one, from B mixing [r.J. Dowdall et al. 1907.01025]

Subsequent work on $B \rightarrow K \nu \bar{\nu}$

The work in [D. Becirevic et al. 2301.06990] uses an average of form factors, including ours, to find $\mathcal{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)=5.06(31) \times 10^{-6}$, slightly lower than the $5.58(37) \times 10^{-6}$ that we obtain.
[A. Issadykov et al. 2211.10683] use a convarient confined quark model to obtain form factors, from which they obtain $\mathcal{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)=4.96(74) \times 10^{-6}$, in agreement with our result.

Conclusions

- First fully relativistic calculation of $B \rightarrow K$ form factors
- Reduced uncertainty, particularly at low q^{2}
- $B \rightarrow K$ branching fractions show $3-5 \sigma$ tension with LHCb in clean regions
- Branching fractions for $B \rightarrow K \nu \bar{\nu}$ now with $<10 \%$ error
- Belle II promised similar uncertainty at $50 \mathrm{ab}^{-1}{ }_{\text {[2101.11573] }}$
- Subsequent work using our form factors finds similar tensions

Thanks for listening. Any questions?

