Results and prospects on binned $b \rightarrow$ sll measurements from LHCb

Mark Smith, Carla Marin

Imperial College London

Outlook

• Binned $b \rightarrow sll$ observables: pheno vs experiment

• Branching fractions: status and new $\Lambda_b \rightarrow \Lambda^{1520} \mu^- \mu^+$ results

• Angular analyses: status and prospects on $B \to K^* \mu^{\scriptscriptstyle -} \mu^{\scriptscriptstyle +}$

Binned b \rightarrow sll observables

Phenomenology perspective

• **BR**: affected by hadronic uncertainties

• Angular observables: first-order form-factor cancellations

• LFU: full cancellations in the SM

Experimental perspective

- **BR**: simple extraction, good control of efficiencies through control modes
- Angular observables: need to control acceptance, many parameters require large yields
- LFU: need control of e[±] vs µ[±] efficiencies - very challenging at hadron machines

Binned b \rightarrow sll observables

Phenomenology perspective

• **BR**: affected by hadronic uncertainties

This talk

fter lunch

- Angular observables: first-order form-factor cancellations
 - **LFU**: full cancellations in the SM

Experimental perspective

- **BR**: simple extraction, good control of efficiencies through control modes
- Angular observables: need to control acceptance, many parameters require large yields
- LFU: need control of e[±] vs μ[±] efficiencies - very challenging at hadron machines

Branching fractions

Status

LCSR

Trend: systematically lower than SM But SM has large uncertainties

Lattice -Data

Status

Trend: systematically lower than SM Recent FF improvements!

$b \rightarrow sll$ with baryons

Baryons provide complementary sensitivity to NP due to **half-integer spin**

- $\Lambda^0_{\ b} \rightarrow \Lambda l^+ l^-$: s = ½, experimentally challenging due to long Λ life-time
- $\Lambda_{b}^{0} \rightarrow pKl^{+}l^{-}$: experimentally easier but predictions complicated due to unknown proportions of many Λ^{*} contributions (with different spins)

$$\mathcal{B}(\Lambda_b^0 \to pK^-\mu^+\mu^-)|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} =$$

$$= \left(2.65 \pm 0.14 \pm 0.12 \pm 0.29 \substack{+0.38\\-0.23}\right) \times 10^{-7}$$
IHEPO5(2020)040

LHCb

2500

 $m(pK^{-})$ [MeV/c²⁻

2000

Idea: focus on dominant Λ^{1520} (s=3/2) contribution, with predictions available [Mott et al, Descotes-Genon et al, Li et al, Reboud et al, Meinel et al]

¹⁵²⁰μ⁺μ⁻: method

Challenge: experimentally disentangle other Λ^* contributions

 \Rightarrow Fit m(pKµ⁺µ⁻) in q² bins + fit background subtracted m(pK) distribution

*Angular analysis: also exploit different spin (½) of nearby resonances

$\Lambda_{h} \rightarrow \Lambda^{1520} \mu^{+} \mu^{-}$: results

arXiv:2302.08262 LHCb Run 1+2

Measurement of BR in q^2 bins:

- compatible with SM at high q^2 (LQCD FF)
- large theory discrepancies at low q^2 \rightarrow more work needed!

Measurement dominated by stat and BR($\Lambda_{\rm h} \rightarrow p K^{-} J/\psi$) uncertainties

Angular analyses

Reminder: $B \rightarrow V \ell \ell$

- Decay completely described by q^2 , ϕ , $\theta_{l'}$, θ_{K}
- 12 q² dependent observables are combinations of the 6 complex amplitudes
- May be contamination from S-wave decays into the same final state (i.e. Kπ)
 - A fit to $m(h_1h_2)$ can help constrain S-wave
 - Detector acceptance and selection gives a non-flat efficiency in the angles and q^2 - must be dealt with in the analysis

$$\frac{d^5\Gamma_P}{dq^2 dm_{K\pi}^2 d\Omega} = \frac{9}{32\pi} \Big[J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + J_{2s} \sin^2 \theta_K \cos 2\theta_\ell + J_{2c} \cos^2 \theta_K \cos 2\theta_\ell + J_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + J_{6s} \sin^2 \theta_K \cos \theta_\ell + J_{6c} \cos^2 \theta_K \cos \theta_\ell + J_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + J_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big] \times |BW_P(m_{K\pi})|^2,$$

Reminder: $B \rightarrow V \ell \ell$

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \Big|_{\mathrm{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin^2 \theta_\ell \sin^2 \phi_\ell \sin^2 \theta_\ell \sin^2 \phi_\ell \sin^2 \theta_\ell \sin^2 \phi_\ell \sin^2 \theta_\ell \sin^2 \phi_\ell \sin^2 \theta_\ell \sin^2 \theta_\ell \sin^2 \theta_\ell \sin^2 \phi_\ell \sin^2 \theta_\ell \sin^2 \phi_\ell \sin^2 \theta_\ell \sin^2$$

 $A_i^P = \frac{(J_i - J_i)}{\left(\frac{\mathrm{d}\Gamma_P}{12} + \frac{\mathrm{d}\bar{\Gamma}_P}{12}\right)}$ Candidates / 0.1 LHCb 2016 $2.5 < q^2 < 4.0 \text{ GeV}^2/c^4$ 2020) 011802 200 -0.50.5 0 $\cos \theta_{K}$

Bin in q^2 and fit the angles

I UCh status

LHCb stat	us		LHCb Run 1 + 2016 SM from DHMV
Mode	Status		(IS)
В ⁰ →К*µµ [PRL 125 (2020) 011802]	2011-2016 - 8 q^2 bins (+ 2 wide), <i>CP</i> -averaged observables only (CP-asymmetries with 3fb ⁻¹). Tension with SM.		$10 \qquad 15 \\ q^2 [\text{GeV}^2/c^4]$
В⁺→К*µµ [PRL 126 (2021) 161802]	9fb ⁻¹ <i>CP</i> -averaged only, folded fits. Local tensions with SM, similar to $B^0 \rightarrow K^* \mu \mu$		$\begin{array}{c} \text{LHCb} \\ + \text{ Data } 9 \text{fb}^{-1} \end{array}$
<i>В→Қµµ</i> [JHEP 05 (2014) 082]	3fb ⁻¹ - 17 bins for <i>B</i> ⁺ , 5 for <i>B</i> ⁰ . <i>A</i> _{<i>FB</i>} and <i>F</i> _{<i>H</i>} SM-like		SM from DHMV
Л _b →Лµµ [JHEP 09 (2018) 146]	2011-2016 - Moments analysis for 34 observables - no <i>CPV</i> . Only high <i>q</i> ² . Consistent with SM		<i>ψ</i> (2 <i>S</i>) <i>ψ</i> (2 <i>S</i>)
$B_{s} \rightarrow \varphi \mu \mu$ [JHEP 11 (2021) 043]	9fb ⁻¹ - 6 q^2 bins. Untagged B_s . SM-like	0 5	$\begin{array}{ccc} 10 & & 15 \\ & q^2 \left[\mathrm{GeV}^2 / c^4 \right] \end{array}$

 P_{5}

Binned angular fits - why and why not?

- Model independent
 - Results may be re-interpreted at any future point
 - Results from different places (i.e. Belle II and LHCb), or with new data sets (LHCb and LHCb upgrade), may be readily combined
- "Easy" to fit
 - The angular observables are mostly uncorrelated
 - Moments analysis if short on data
- Does not fully exploit the data
 - Will give less precision on the WCs than an unbinned fit in q^2
- Redundant parameters
 - Lose some experimental precision due to unnecessary correlations

Issue - statistics

- Small statistics
 - Fits can be unstable, biased, give poor coverage
 - "Optimised observables" a particular issue large correlations with S_{2s}
 - PDF not necessarily "physical" causes issues for the minimiser

S-wave contamination

We fit $m(K\pi)$ to help control the *S*-wave and interference

- Need a model for the *P*-wave in $m(K\pi)$
 - Relativistic BW probably suffices
 - how big is a *K** (3.0 ± 0.5) GeV⁻¹?
- Need a model for the *S*-wave in $m(K\pi)$
 - LASS parametrisation is common. Could also use an isobar model.
 - What parameters to use?

$B^0 \rightarrow K^* \mu \mu$ - what more can we do?

• Massive leptons

- Some extra fit parameters
- Scalar amplitudes
 - Some extra fit parameters

 $J_{1c} \neq J_{2c}, \, 3J_{2s} \neq J_{1s}$

 $J_{6c} \neq 0$ for massive leptons $J_{1c} \neq -J_{2c}$

 $\frac{d^5 \Gamma_P}{dq^2 dm_{K\pi}^2 d\Omega} = \frac{9}{32\pi} \left[J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + J_{2s} \sin^2 \theta_K \cos 2\theta_\ell \right]$ $+J_{2c}\cos^2\theta_K\cos 2\theta_\ell + J_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi$ $+J_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$ $+J_{6s}\sin^2\theta_K\cos\theta_\ell + (J_{6c})\cos^2\theta_K\cos\theta_\ell$ $+J_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi$ $+J_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi] \times |BW_P(m_{K\pi})|^2,$

[Alguero et al (2021)]

Symmetry relations

More angular observables (25) than amplitudes (18)

- Observables are not independent
 - You can write down relations between them
- We cannot reduce the degrees of freedom in the fit

Each observable is an independent, approximately orthogonal angular coefficient

IV. From the equality of the modulus of both vectors n_S and n'_S one obtains

$$|n'_S|^2 = |n_S|^2 = a'_S(n'^{\dagger}_S n_{\parallel}) + b'_S(n'^{\dagger}_S n_{\perp}), \qquad (3.22)$$

which implies the following relation:

$$0 = +\frac{27}{16}\beta^2 F_S(16J_{2s}^2 - 4J_3^2 - \beta^2 J_{6s}^2 - 4J_9^2) - 2\Gamma'[-2(\beta^2 J_{6s}S_{S2}^i S_{S3}^i - \beta^2 J_9 S_{S3}^i S_{S4}^r + 4J_9 S_{S2}^i S_{S5}^r + \beta^2 J_{6s}S_{S4}^r S_{S5}^r) + 4S_{S2}^{i2}(J_3 + 2J_{2s}) + \beta^2 S_{S3}^{i2}(2J_{2s} - J_3) + \beta^2 S_{S4}^{r2}(J_3 + 2J_{2s}) + 4S_{S5}^{r2}(2J_{2s} - J_3)].$$
(5)

All CP-asymmetries

- Simultaneous fit of B and \overline{B} to extract CP-asymmetry observables
- To measure all the angular *CP*-asymmetries you need an extended fit
 - You must constrain A_{CP}

$$1 = \frac{3}{4}(2S_{1s} + S_{1c}) - \frac{1}{4}(2S_{2s} + S_{2c}) \qquad \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}} = A_{CP} = \frac{9}{16} \left[\frac{4}{3}A_{1s} + \frac{2}{3}A_{1c} - \frac{8}{9}A_{2s} - \frac{4}{9}A_{2c}\right]$$

- Could fit for the branching fraction relative to $J/\psi K\pi$
 - Cancel most nuisance asymmetries
 - Integrate the efficiency over the fitted angular distribution
 - Model independent measurement of the branching fraction and A_{CP}

$$N_{sig} = N_{J/\psi} \times \frac{\int \Gamma_{sig}(\Omega m_{K\pi}) \cdot \epsilon_{sig}(\Omega, m_{K\pi}) \mathrm{d}\Omega \mathrm{d}m_{K\pi}}{\int \Gamma_{J/\psi}(\Omega m_{K\pi}) \cdot \epsilon_{J/\psi}(\Omega, m_{K\pi}) \mathrm{d}\Omega \mathrm{d}m_{K\pi}} \times \frac{\mathcal{B}(B^0 \to K^- \pi \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^- \pi^+ J/\psi)}$$

More bins

- With more statistics we can fit more bins of q^2
 - Better resolution of the q^2 dependence of the observables
 - Will still likely need to provide a confidence interval with the Feldman-Cousins method

Conclusions

Binned measurements still a powerful tool to test SM predictions in b \rightarrow sll

- long standing BR discrepancies:
 - looking forward to new FF and pheno calculations
 - experimental results can "easily" improve as more data is available
 - $\circ \quad \Lambda_b \to \Lambda^{1520} I^+ I^- \text{ enables comparison to pheno predictions but work needed on this front}$

- long standing angular discrepancies:
 - New results in progress, with some new features
 - Still a place for binned analyses

$\Lambda_b \rightarrow \Lambda^{1520} l^+ l^-$

Table 2: Signal yields and the absolute differential branching fraction, in bins of q^2 , for the $\Lambda_b^0 \to \Lambda(1520)\mu^+\mu^-$ decay. The first uncertainty is statistical, the second systematic, and the third due to the uncertainty on the $\Lambda_b^0 \to pK^-J/\psi$ and $J/\psi \to \mu^+\mu^-$ branching fractions.

q^2 interval [GeV ² / c^4]	$N_{\Lambda(1520)\mu^+\mu^-}$	$\frac{d\mathcal{B}(\Lambda_b^0 \to \Lambda(1520)\mu^+\mu^-)}{dq^2} \left[10^{-8} {\rm GeV}^{-2} c^4\right]$
0.1 - 3.0	96 ± 18	$1.89 \pm 0.35 \pm 0.19 \pm 0.36$
3.0-6.0	138 ± 18	$2.42\pm 0.32\pm 0.17\pm 0.45$
6.0 - 8.0	65 ± 14	$1.58 \pm 0.36 \pm 0.16 \pm 0.30$
11.0 - 12.5	59 ± 14	$2.07 \pm 0.47 \pm 0.26 \pm 0.39$
15.0 - 17.0	12 ± 5	$0.57 \pm 0.24 \pm 0.13 \pm 0.11$
1.1–6.0	175 ± 21	$1.95 \pm 0.23 \pm 0.16 \pm 0.37$

$\Lambda_b \rightarrow \Lambda^{1520} l^+ l^-$

Table 1: Relative systematic uncertainties [in %] of the differential branching fraction ratio measurement. The total uncertainty is obtained as the quadratic sum of the individual contributions.

Course	q^2 interval [GeV ² / c^4]					
Source	0.1 - 3.0	3.0-6.0	6.0-8.0	11.0 - 12.5	15.0 - 17.0	1.1-6.0
Signal fit model	9.6	6.5	9.3	9.3	15.3	7.2
Normalization fit model	1.3	1.3	1.3	1.3	1.3	1.3
Hardware trigger	0.3	0.5	0.2	0.1	0.1	0.3
PID	2.4	2.4	1.6	7.0	16.0	2.4
Simulation corrections	0.1	0.1	0.1	0.1	0.1	0.1
Decay model	1.7	2.6	4.8	4.0	5.4	0.9
Simulated sample size	0.2	0.2	0.2	0.3	0.5	0.1
$\mathcal{B}(J/\psi \to \mu^+\mu^-)/\mathcal{B}(\Lambda(1520) \to pK^-)$	2.3	2.3	2.3	2.3	2.3	2.3
Quadratic sum	10.4	7.9	10.9	12.6	22.9	8.1
${\cal B}(\Lambda^0_b o p K^- J/\psi)$	18.8	18.8	18.8	18.8	18.8	18.8

All b-hadron species! [PRD100(2019)031102]

$$lacksymbol{\mathsf{B}}_{\mathsf{s}}{:}\quad rac{f_s}{f_d+f_u}=0.122\pm0.006$$

$$ullet \quad \wedge_{ ext{b}}: \quad rac{f_{\Lambda_b}}{f_d+f_u} = 0.259 \pm 0.018$$

and more: $\Xi_{b'} \Omega_{b'} B_{c'} B^* ...$

Total recorded luminosity ~9 fb⁻¹:

- Run 1 (2010-2012) ~ 3 fb⁻¹
- Run 2 (2015-2018) ~ 6 fb⁻¹

x2 b-quark production from 7 to 13 TeV pp collisions \rightarrow around x4 b-hadrons in Run 2

Experimental setup

Tracking system

Reconstruct trajectories of charged particles

Identify pp and b-decay vertex

Measure particle momentum from bending in magnetic field

