An unbinned approach to measuring the $B^\pm o \pi^\pm \mu^+ \mu^-$ decay rate

Alex Marshall¹, Michael McCann², Mitesh Patel², Konstantinos Petridis¹, Méril Reboud³, Danny van Dyk³ April 19, 2023

Beyond the Flavour Anomalies IV - Barcelona

¹University of Bristol, ²Imperial College London, ³Durham University,

Introduction

- □ Recent developments from both theory and experiment allow for the possibility of unbinned measurements of channels such as $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$ and $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-}$.
- □ An unbinned approach exploits the full q² shape information.
- □ Fit the q^2 spectra of $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ extracting C_9 (+ phase) and C_{10} , floating the majority of non-local parameters.
- □ The lower stats of this channel motivates incorporating a constraint from theory to help pin down hadronic contributions.
- □ Such an approach maximises the experimental sensitivity to new physics contributions in $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ decays.

□ Previous binned (in q^2) measurement of $\mathcal{B}(B^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-})$ and $\mathcal{A}_{CP}(B^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-})$ [$B^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-}$ binned - LHCb]

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 2 / 21

Differences with respect to $B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$

- $\Box |V_{ts}/V_{td}|^2 \approx 22$ greatly reduced decay rate across the board.
 - ▷ Is this the case for any NP? Is NP minimal flavour violating?
- The ρ and ω resonances are more significant (relative to EW penguin mode) due to the additional *CKM* suppression of EW penguin mode.
- □ Contributions from weak annihilation and light quark loops (the light quark continuum) cannot be ignored as they are in $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$, for the same reason.
- □ Fitting B^+ and B^- separately is essential due to the potential for large *CP*-asymmetries in $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ even in the SM.

Alex Marshall
$$B^{\pm}
ightarrow \pi^{\pm} \mu^{+} \mu^{-}$$
 3 / 21

Differences with respect to $B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$

Experimental considerations:

- \Box Larger combinatorial background (generally more pions) requires a tighter selection o signal loss.
- \Box Different physics background considerations for example, significant $B^{\pm} \rightarrow K^{\pm}_{\rightarrow\pi}\mu^{+}\mu^{-}$.
- \Box Can potentially nicely avoid floating any resolution parameters by extracting these parameters from the higher statistics $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$ results.

$$B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$$
 4 / 21

Describing the decay rate

□ The $B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}$ decay can be fully described with two variables, q^{2} and $cos(\theta_{\ell})$. □ For now we integrate over $cos(\theta_{\ell})$.

The decay rate is then as follows¹:

$$\begin{split} \frac{d \Gamma(B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-})}{dq^{2}} &= \frac{G_{F}^{2} \alpha^{2} |V_{tb} V_{td}^{*}|^{2}}{2^{7} \pi^{5}} |\boldsymbol{k}| \Big\{ \frac{2}{3} |\boldsymbol{k}|^{2} \beta_{+}^{2} |C_{10} f_{+}(q^{2})|^{2} \\ &+ \frac{m_{\ell}^{2} (M_{B}^{2} - M_{\pi}^{2})^{2}}{q^{2} M_{B}^{2}} |C_{10} f_{0}(q^{2})|^{2} \\ &+ |\boldsymbol{k}|^{2} \Big[1 - \frac{1}{3} \beta_{+}^{2} \Big] \Big| C_{9}^{eff, B^{\pm}} f_{+}(q^{2}) + 2 C_{7}^{eff} \frac{m_{b} + m_{d}}{M_{B} + M_{\pi}} f_{T}(q^{2}) \Big|^{2} \Big\}, \end{split}$$

where non-local components ($Y(q^2)$) are baked into $C_9^{e\!f\!f}$,

$$C_9^{eff}(q^2) = C_9 + Y(q^2)$$

Alex Marshall

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 5 / 21

¹This requires an assumption of no (pseudo-)scalar and (pseudo-)tensor new physics.

Building the $q^2 < 0$ constraint

- □ Non-local contributions to $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ can be computed in the $q^{2} < 0$ region as in [2015 Hambrock et al.].
 - ▷ Employing the operator-product expansion, QCD factorization and light-cone sum rule techniques to compute the H^(q).
- □ The sum of all the relevant contributions can be related to $\Delta C_9(q^2)$ at various points in the $q^2 < 0$ region:

$$\Delta C_9(q^2) = -16\pi^2rac{(\lambda_u\mathcal{H}^{(u)}(q^2)+\lambda_c\mathcal{H}^{(c)}(q^2))}{\lambda_t f^+(q^2)}$$

 Build the constraint using the following dispersion relation:

$$\begin{split} \Delta C_{9}(q^{2}) &- \Delta C_{9}(q_{0}^{2}) = \\ (q^{2} - q_{0}^{2}) \Big[Y_{\rho,\omega}(q^{2}) + Y_{c\bar{c}}^{2P}(q^{2}) + \\ Y_{light \; quark \; continuum}(q^{2}) + Y_{J/\psi,\psi(2S),...}(q^{2}) \Big]. \end{split}$$

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 6 / 21

Describing the hadronic contributions - $Y_{light quark continuum}(q^2)$

$$C_9^{eff}(q^2) = C_9 + Y(q^2)$$

 \Box Non-local components are handled by combining two dispersion relations ($\mathcal{H}^{(u)}$ and $\mathcal{H}^{(c)}$) into one:

Describing the hadronic contributions - $Y_{c\bar{c}}^{2P}(q^2)$

$$C_9^{eff}(q^2) = C_9 + Y(q^2)$$

 \Box Non-local components are handled by combining two dispersion relations ($\mathcal{H}^{(u)}$ and $\mathcal{H}^{(c)}$) into one:

$$\Delta C_9(q^2) - \Delta C_9(q_0^2) = (q^2 - q_0^2) \Big[Y_{\rho,\omega}(q^2) + Y_{c\bar{c}}^{2P}(q^2) + Y_{light \ quark \ continuum}(q^2) + Y_{J/\psi,\psi(2S),...}(q^2) \Big]$$

- □ 2P charmonium contribution $Y_{c\bar{c}}^{2P}(q^2)$ is the following rescattering:
 - $B^{\pm} \rightarrow \pi^{\pm} M M' \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

 $MM' = \{DD, DD^*, D^*D^*\}$

 Following the recipe in [2020 Cornella et al.] that models the two particle spectral density as 2-body phasespace accounting for angular momentum.

Describing the hadronic contributions - $Y_{c\bar{c}}^{2P}(q^2)$

$$C_9^{eff}(q^2) = C_9 + Y(q^2)$$

 \Box Non-local components are handled by combining two dispersion relations ($\mathcal{H}^{(u)}$ and $\mathcal{H}^{(c)}$) into one:

$$\Delta C_9(q^2) - \Delta C_9(q_0^2) = (q^2 - q_0^2) \Big[Y_{\rho,\omega}(q^2) + Y_{c\bar{c}}^{2P}(q^2) + Y_{light \ quark \ continuum}(q^2) + Y_{J/\psi,\psi(2S),...}(q^2) \Big].$$

Approximate the sum of DD, D*D* and DD* contributions as a single component with a single magnitude and phase.

Describing the hadronic contributions - Resonances

$$C_9^{eff}(q^2)=C_9+Y(q^2)$$

 \Box Non-local components are handled by combining two dispersion relations ($\mathcal{H}^{(u)}$ and $\mathcal{H}^{(c)}$) into one:

$$\Delta C_9(q^2) - \Delta C_9(q_0^2) = (q^2 - q_0^2) \Big[Y_{\rho,\omega}(q^2) + Y_{c\bar{c}}^{2P}(q^2) + Y_{light \ quark \ continuum}(q^2) + Y_{J/\psi,\psi(2S),...}(q^2) \Big]$$

- Resonances are described with relativistic Breit–Wigner distributions.
- Each resonance has a unique phase (δ_V) and a unique magnitude (η_V) for the B^+ and the B^- PDF.
 - > This enables us to model any CP-violation.
- □ We introduce constraints on resonance branching fractions using existing measurements $(BF \propto \eta_V^2)$.

$B \rightarrow \pi$ local form factors

- □ Taken from [2021 Leljak et al.].
- \Box Nominal is the K = 4 LCSR+LQCD option.
 - \triangleright K is the maximal order of the z-expansion.
- \Box In our fit the form factor parameters are fixed.
- □ We will assess an uncertainty on the Wilson coefficients as a systematic using the covariance matrix provided in [2021 Leljak et al.].

mod. BCL K = 3 (LCSR) mod. BCL K = 3 (LCSR) 1.41 mod BCL K = A GCER + LOCK mod BCL K = ACLORE + LOCE T LON ENAL/MILC RBC/UKOCT 1.24 4.00 1.00 $f_{+}(q^{2})$ (²)⁺ 0.60 2.00 0.28 20.0 $a^2 \, [\text{GeV}^2]$ $q^2 [\text{GeV}^2]$

The $\bar{B}
ightarrow \pi$ form factors from QCD and their impact on $|V_{ub}|$

Domagoj Leljak,^a Blaženka Melić,^a Danny van Dyk^b

^a Rudjer Boskovic Institute, Division of Theoretical Physics, Bijenička 54, HR-10000 Zagreb, Croatia

^bTechnische Universität München, James-Franck-Straße 1, 85748 Garching, Germany

E-mail: domagoj.leljak@irb.hr, melic@irb.hr, danny.van.dyk@gmail.com

scenario	LCSR+LQCD		LCSR	
param.	K=3	K = 4	K=3	
$f_{+}(0)$	$0.237\substack{+0.017\\-0.017}$	$0.235\substack{+0.019\\-0.019}$	$0.283\substack{+0.027\\-0.027}$	
b_1^+	$-2.38\substack{+0.33\\-0.38}$	$-2.45\substack{+0.49\\-0.54}$	$-1.0\substack{+3.5\\-3.6}$	
b_2^+	$-0.82\substack{+0.76\\-0.81}$	$-0.2^{+1.1}_{-1.2}$	$-2.8\substack{+4.9\\-4.7}$	
b_3^+	_	$-0.9^{+4.2}_{-4.0}$		
	10.00	10.00		

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 11 / 21

Correlations in the constraint

We do not have access to the correlations between the individual pieces of the $q^2 < 0$ information, so in our fits we make the assumption of no correlations (a conservative choice).

If one did wish to make a different assumption:

- Some contributions are small and can be ignored.
- □ Others are known to be dominated by local form factor uncertainties \rightarrow cancel in $\Delta C_9(q^2)$.
- □ The uncertainty from H^(p)_{WA} dominates the real components assume correlated between B⁺ and B⁻.
- □ The uncertainty from $\mathcal{H}_{nonf,spect}^{(p)}$ dominates the imaginary components assume correlated between B^+ and B^- .
- □ Assume points at different q^2 points in the same component are correlated.

Toy studies

Use toys to study fit stability and to estimate expected precision.

- □ We run toys at the SM, using hadronic parameters obtained from fits to negative q^2 points ([See slide 16]), these are compatible with [2015 Hambrock et al.].
- \Box Fit B^+ and B^- simultaneously sharing C_{10} , C_9 and the phase of C_9 (flipping sign under CP).
- □ Fix the light quark continuum contribution $(Y_{light quark continuum}(q^2))$.
- □ Float both the phase and magnitude the $Y_{c\bar{c}}^{2P}(q^2)$ component, and separately for both B^+ and B^- .

Avoid local minima by fitting each generated toy multiple times from random start points and pick lowest NLL.

Toy studies - fit technicalities

- \Box Select only events \pm 40 MeV around *B* mass, fit *B* mass constrained q^2 .
- □ The detector resolution (assume at J/ψ) is convolved with the fit model using a Fast Fourier Transform, and the same resolution function as used in [$B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$ LHCb] is employed.
- □ A combinatorial background shape is included.
- □ We employ simple q^2 -dependent efficiency function based on that of $[B^{\pm} \rightarrow K^{\pm} \mu^+ \mu^-$ LHCb].
- \Box Constraints are employed on the BFs of resonances from existing measurements (based on BF and A_{CP} measurements).

Alex Marshall

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 14 / 21

Choosing a q^2 region to fit

- $\hfill \Box$ With the statistics available from LHCb run 1 + 2 it is no surprise that we cannot float the parameters of the open charm resonances.
- □ We, therefore, suggest cutting out the open charm region.
 - \triangleright We cut q^2 just below the $\psi(3770)$ resonance.
- □ This avoids model dependence related to fixing these parameters.

Alex Marshall

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 15 / 21

Hadronic contributions with q^2 - 9 fb⁻¹

□ Pick starting hadronic parameters such that $\Delta C_9(q^2)$ distributions are compatible with [2015 Hambrock et al.].

Compare uncertainty of $\Delta C_9(q^2)$ for three scenarios:

- \Box Using just the $q^2 < 0$ information...
- \Box ... then adding *BF* constraints.
- \Box ... then adding LHCb run 1 + 2 pseudo-data.

The improvement in sensitivity to non-local contributions from adding 9 fb^{-1} LHCb data is small.

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 16 / 21

Hadronic contributions as a function of q^2 - 300 fb⁻¹

- We can repeat the same exercise using 300 fb⁻¹ of LHCb data (~ 2035).
- $\label{eq:approx_state} \begin{array}{l} \square \mbox{ This brings the } B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-} \\ \mbox{ event yields to similar to LHCb} \\ \mbox{ run } 1 + 2 \ B^{\pm} \to K^{\pm} \mu^{+} \mu^{-} \mbox{ yields.} \end{array}$

At this point the LHCb data is providing a clear improvement in sensitivity to non-local contributions.

$$B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-} \qquad 17 / 21$$

How much does the $q^2 < 0$ information add?

- \Box We run fits to generated pseudo-datasets representative of 9 fb⁻¹ of LHCb data.
- \Box Fit each dataset both with and without the $q^2 < 0$ constraint, as such any differences are more significant.
- □ Report uncertainties from Hesse matrix and combine any bias into the overall uncertainty.
- □ Largest improvements are in the phases of the resonances, and both the phases and the magnitudes of the $Y_{c\bar{c}}^{2\rho}(q^2)$.
- □ This increase in sensitivity to non-local parameters translates into better precision on the Wilson coefficients describing the short-distance physics.

Alex Marshall $B^\pm
ightarrow \pi^\pm \mu^+ \mu^-$ 18 / 21

How much does the $q^2 < 0$ information add?

- □ Large correlation between C_9 and C_{10} :
 - ▷ This is expected. C_9 and C_{10} can swap out so long as $\mathcal{B}(B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-})_{EWP}$ remains satisfied.
 - This is especially true in the case of small interference with non-local contributions.
- □ Unconstrained fits are unfeasible.

The build-up of results at $C_{10} \approx 0$ makes up a significant fraction of toys.

How does the picture change with more data?

- □ With 300 fb⁻¹ the expected $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ event yields are similar to those of LHCb run 1 + 2 $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$ yields.
- □ We can now float the open charm resonance parameters.
- □ Yet to run more than a few toys here, however, we expect the constraint should become less essential but still relevant.

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 20 / 21

Conclusion

- □ We have a procedure that demonstrates it possible to fit $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ at LHCb in an unbinned way fully accounting for CPV, the largest non-local contributions and all interference effects.
- □ The $q^2 < 0$ information and the *BF* constraints do the heavy lifting on pinning down the hadronic components of $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$, the current LHCb dataset is not large enough to independently control these components.
- □ We find that employing $q^2 < 0$ information from QCD factorization and light-cone sum rule techniques as a constraint in the likelihood of fits to LHCb data is essential for fits to current and near-future data sets.
- □ We are working to publish these studies in arXiv:2306.XXXX.

Thanks for listening

BACKUP SLIDES

How much does the $q^2 < 0$ information add? Validation fits

Parameter	$\sigma_{residuals}$ un-constrained	$\sigma_{residuals}$ constrained	Parameter	$\sigma_{residuals}$ un-constrained	$\sigma_{residuals}$ constrained
A _{CP}	$9.5 imes 10^{-4}$	$7.7 imes 10^{-4}$	$\eta_{2P}^{B^+}$	3.02	0.95
${\cal B}(B^\pm o \pi^\pm \mu^+ \mu^-)$	$3.0 imes 10^{-9}$	$3.1 imes 10^{-9}$	$\delta^{B^+}_{2P}$	1.61	1.18
${\cal B}(B^\pm o \pi^\pm \mu^+ \mu^-)_{EWP}$	$1.5 imes 10^{-9}$	$7.3 imes 10^{-10}$	$\delta_{L(z)}^{B^-}$	1.31	1.08
C10	2.67	1.44	$n^{B_{-}}$	4.32	4.30
C_9	1.44	1.14	''ω(782)	1.05	
δ_{C_0}	0.93	0.34	δ ^B _ω (782)	1.86	1.31
$\delta^{B^+}_{I/\psi}$	1.46	0.63	$\eta^{B^-}_{\psi(2S)}$	21.69	21.96
$\eta^{B^+}_{\omega(782)}$	2.96	3.04	$\delta^{B^-}_{\psi(2S)}$	1.43	1.14
$\delta^{B^+}_{\omega(782)}$	1.42	0.94	$\eta^{B^-}_{\rho(770)}$	0.62	0.62
$\eta_{\psi(25)}^{B^+}$	17.60	16.10	$\delta^{B^{-}}_{\rho(770)}$	1.57	0.58
$\delta^{B^+}_{\psi(25)}$	1.32	0.71	$\eta_{2P}^{B^-}$	4.97	0.90
$\eta_{\rho(770)}^{B^+}$	0.60	0.60	$\delta_{2P}^{B^-}$	1.51	1.33
$\delta^{B^+}_{\rho(770)}$	1.12	0.84			

Build up at $C_{10} \approx 0$

- Most likely these are toys stuck at a local minimum, with the correct start point these would converge properly.
 - Current investigating this looks promising

 $\Box~C_{10}$ always appears as $|C_{10}|^2$ and so the PDF symmetrical around $C_{10} \approx 0$

$$\begin{split} \frac{d\Gamma(B^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-})}{dq^{2}} &= \frac{G_{F}^{2}\alpha^{2}|V_{tb}V_{td}^{*}|^{2}}{2^{7}\pi^{5}}|\boldsymbol{k}| \Big\{ \frac{2}{3}|\boldsymbol{k}|^{2}\beta_{+}^{2}|C_{10}f_{+}(q^{2})|^{2} \\ &+ \frac{m_{\ell}^{2}(M_{B}^{2} - M_{\pi}^{2})^{2}}{q^{2}M_{B}^{2}}|C_{10}f_{0}(q^{2})|^{2} \\ &+ |\boldsymbol{k}|^{2} \Big[1 - \frac{1}{3}\beta_{+}^{2} \Big] \Big| C_{9}^{eff,B^{\pm}}f_{+}(q^{2}) + 2C_{7}^{eff}\frac{m_{b} + m_{d}}{M_{B} + M_{\pi}}f_{T}(q^{2}) \Big|^{2} \Big\}, \end{split}$$

- □ C_{10} and C_9 are hard to separate and are somewhat interchangeable - so long as the $\mathcal{B}(B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-})_{EWP}$ remains satisfied.
- □ We could use $B_s \rightarrow \mu^+ \mu^-$ results $(C_{10} C'_{10})$ to constrain C_{10} however this would require us to assume $C'_{10} = 0$ as our C_{10} is really $C_{10} + C'_{10}$.

Comparison to current limits

- □ Reduce limit to one corner of the circle
- \Box Current limit assumes real C_9