An unbinned approach to measuring the $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$decay

 rateAlex Marshall ${ }^{1}$, Michael McCann ${ }^{2}$, Mitesh Patel ${ }^{2}$, Konstantinos Petridis ${ }^{1}$, Méril Reboud ${ }^{3}$, Danny van Dyk ${ }^{3}$ April 19, 2023

Beyond the Flavour Anomalies IV - Barcelona
${ }^{1}$ University of Bristol, ${ }^{2}$ Imperial College London, ${ }^{3}$ Durham University,

Introduction

Recent developments from both theory and experiment allow for the possibility of unbinned measurements of channels such as $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$and $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$.$\square$ An unbinned approach exploits the full q^{2} shape information.
\square Fit the q^{2} spectra of $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$ extracting C_{9} (+ phase) and C_{10}, floating the majority of non-local parameters.The lower stats of this channel motivates incorporating a constraint from theory to help pin down hadronic contributions.Such an approach maximises the experimental sensitivity to new physics contributions in $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$decays.Previous binned (in q^{2}) measurement of $\mathcal{B}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)$and
$\mathcal{A}_{C P}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)\left[B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right.$ binned - LHCb]

Differences with respect to $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$

$\square\left|V_{t s} / V_{t d}\right|^{2} \approx 22$ - greatly reduced decay rate across the board.
\triangleright Is this the case for any NP? Is NP minimal flavour violating?
\square The ρ and ω resonances are more significant (relative to EW penguin mode) due to the additional CKM suppression of EW penguin mode.Contributions from weak annihilation and light quark loops (the light quark continuum) cannot be ignored as they are in $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$, for the same reason.Fitting B^{+}and B^{-}separately is essential due to the potential for large $C P$-asymmetries in $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$- even in the SM.

Differences with respect to $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$

Experimental considerations:Larger combinatorial background (generally more pions) requires a tighter selection \rightarrow signal loss.Different physics background considerations - for example, significant $B^{ \pm} \rightarrow K_{\rightarrow}^{ \pm} \pi \mu^{+} \mu^{-}$.Can potentially nicely avoid floating any resolution parameters - by extracting these parameters from the higher statistics $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$results.

Describing the decay rate

The $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$decay can be fully described with two variables, q^{2} and $\cos \left(\theta_{\ell}\right)$.For now we integrate over $\cos \left(\theta_{\ell}\right)$.The decay rate is then as follows ${ }^{1}$:

$$
\begin{aligned}
\frac{d \Gamma\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)}{d q^{2}} & =\frac{G_{F}^{2} \alpha^{2}\left|V_{t b} V_{t d}^{*}\right|^{2}}{2^{7} \pi^{5}}|\boldsymbol{k}|\left\{\frac{2}{3}|\boldsymbol{k}|^{2} \beta_{+}^{2}\left|C_{10} f_{+}\left(q^{2}\right)\right|^{2}\right. \\
& +\frac{m_{\ell}^{2}\left(M_{B}^{2}-M_{\pi}^{2}\right)^{2}}{q^{2} M_{B}^{2}}\left|C_{10} f_{0}\left(q^{2}\right)\right|^{2} \\
& \left.+|\boldsymbol{k}|^{2}\left[1-\frac{1}{3} \beta_{+}^{2}\right]\left|C_{9}^{e f f, B^{ \pm}} f_{+}\left(q^{2}\right)+2 C_{7}^{e f f} \frac{m_{b}+m_{d}}{M_{B}+M_{\pi}} f_{T}\left(q^{2}\right)\right|^{2}\right\}
\end{aligned}
$$

where non-local components $\left(Y\left(q^{2}\right)\right)$ are baked into $C_{9}^{\text {eff }}$,

$$
C_{9}^{e f f}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

[^0]
Building the $q^{2}<0$ constraint

Non-local contributions to $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$ can be computed in the $q^{2}<0$ region as in [2015 Hambrock et al.].\triangleright Employing the operator-product expansion, QCD factorization and light-cone sum rule techniques to compute the $\mathcal{H}^{(q)}$.The sum of all the relevant contributions can be related to $\Delta C_{9}\left(q^{2}\right)$ at various points in the $q^{2}<0$ region:

$$
\Delta C_{9}\left(q^{2}\right)=-16 \pi^{2} \frac{\left(\lambda_{u} \mathcal{H}^{(u)}\left(q^{2}\right)+\lambda_{c} \mathcal{H}^{(c)}\left(q^{2}\right)\right)}{\lambda_{t} f+\left(q^{2}\right)} .
$$Build the constraint using the following dispersion relation:

$$
\begin{aligned}
& \Delta C_{9}\left(q^{2}\right)-\Delta C_{9}\left(q_{0}^{2}\right)= \\
& \quad\left(q^{2}-q_{0}^{2}\right)\left[Y_{\rho, \omega}\left(q^{2}\right)+Y_{c \bar{c}}^{2 P}\left(q^{2}\right)+\right. \\
& \left.\quad Y_{\text {light quark continuum }}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}\left(q^{2}\right)\right]
\end{aligned}
$$

$B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$

Describing the hadronic contributions - $Y_{\text {light }}$ quark continuum $\left(q^{2}\right)$

$$
C_{9}^{e f f}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

Non-local components are handled by combining two dispersion relations ($\mathcal{H}^{(\mu)}$ and $\mathcal{H}^{(c)}$) into one: $\Delta C_{9}\left(q^{2}\right)-\Delta C_{9}\left(q_{0}^{2}\right)=\left(q^{2}-q_{0}^{2}\right)\left[Y_{\rho, \omega}\left(q^{2}\right)+Y_{c \bar{c}}^{2 P}\left(q^{2}\right)+Y_{\text {light }}\right.$ quark continuum $\left.\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}\left(q^{2}\right)\right]$.$\ln B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$, both the rare mode $\left(V_{t b} V_{t d}^{*}\right)$ and these light quark diagrams $\left(V_{u b} V_{u d}^{*}\right)$ go as $\sim \lambda^{3}$.
$\triangleright \ln$ contrast in $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$the rare mode ($V_{t b} V_{t s}^{*}$) goes as $\sim \lambda^{2}$.

Describing the hadronic contributions $-Y_{c \bar{c}}^{2 P}\left(q^{2}\right)$

$$
C_{9}^{e f f}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$Non-local components are handled by combining two dispersion relations $\left(\mathcal{H}^{(u)}\right.$ and $\left.\mathcal{H}^{(c)}\right)$ into one: $\Delta C_{9}\left(q^{2}\right)-\Delta C_{9}\left(q_{0}^{2}\right)=\left(q^{2}-q_{0}^{2}\right)\left[Y_{\rho, \omega}\left(q^{2}\right)+Y_{c \bar{c}}^{2 P}\left(q^{2}\right)+Y_{\text {light quark continuum }}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}\left(q^{2}\right)\right]$.2P charmonium contribution $Y_{c \bar{c}}^{2 P}\left(q^{2}\right)$ is the following rescattering:

$$
\begin{gathered}
B^{ \pm} \rightarrow \pi^{ \pm} M M^{\prime} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-} \\
M M^{\prime}=\left\{D D, D D^{*}, D^{*} D^{*}\right\}
\end{gathered}
$$Following the recipe in [2020 Cornella et al.] that models the two particle spectral density as 2-body phasespace accounting for angular momentum.

Describing the hadronic contributions $-Y_{c \bar{c}}^{2 P}\left(q^{2}\right)$

$$
C_{9}^{e f f}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

\square Non-local components are handled by combining two dispersion relations ($\mathcal{H}^{(u)}$ and $\left.\mathcal{H}^{(c)}\right)$ into one: $\Delta C_{9}\left(q^{2}\right)-\Delta C_{9}\left(q_{0}^{2}\right)=\left(q^{2}-q_{0}^{2}\right)\left[Y_{\rho, \omega}\left(q^{2}\right)+Y_{c \bar{c}}^{2 P}\left(q^{2}\right)+Y_{\text {light quark continuum }}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}\left(q^{2}\right)\right]$.

Approximate the sum of $D D, D^{*} D^{*}$ and $D D^{*}$ contributions as a single component with a single magnitude and phase.

Describing the hadronic contributions - Resonances

$$
C_{9}^{e f f}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$Non-local components are handled by combining two dispersion relations $\left(\mathcal{H}^{(u)}\right.$ and $\left.\mathcal{H}^{(c)}\right)$ into one: $\Delta C_{9}\left(q^{2}\right)-\Delta C_{9}\left(q_{0}^{2}\right)=\left(q^{2}-q_{0}^{2}\right)\left[Y_{\rho, \omega}\left(q^{2}\right)+Y_{c \bar{c}}^{2 P}\left(q^{2}\right)+Y_{\text {light }}\right.$ quark continuum $\left.\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}\left(q^{2}\right)\right]$.

Resonances are described with relativistic Breit-Wigner distributions.
\square Each resonance has a unique phase $\left(\delta_{V}\right)$ and a
unique magnitude $\left(\eta_{V}\right)$ for the B^{+}and the B^{-}
Each resonance has a unique phase $\left(\delta_{V}\right)$ and a
unique magnitude $\left(\eta_{V}\right)$ for the B^{+}and the B^{-} PDF.
\triangleright This enables us to model any CP-violation.We introduce constraints on resonance branching fractions using existing measurements $\left(B F \propto \eta_{V}^{2}\right)$.

$$
\left|Y_{\rho, \omega}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}\left(q^{2}\right)\right|^{2}
$$

$$
B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}
$$

$10 / 21$Taken from [2021 Leljak et al.].Nominal is the $K=4$ LCSR + LQCD option.
$\triangleright K$ is the maximal order of the z-expansion.In our fit the form factor parameters are fixed.We will assess an uncertainty on the Wilson coefficients as a systematic using the covariance matrix provided in [2021 Leljak et al.].

The $\bar{B} \rightarrow \pi$ form factors from QCD and their impact on $\left|V_{u b}\right|$

Domagoj Leljak, ${ }^{a}$ Blaženka Melić, ${ }^{a}$ Danny van Dyk ${ }^{b}$

${ }^{a}$ Rudjer Boskovic Institute, Division of Theoretical Physics, Bijenicka 54, HR-10000 Zagreb, Croatia
${ }^{b}$ Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
E-mail: domagoj.leljak@irb.hr, melic@irb.hr, danny.van.dyk@gmail.com

Correlations in the constraint

We do not have access to the correlations between the individual pieces of the $q^{2}<0$ information, so in our fits we make the assumption of no correlations (a conservative choice).

If one did wish to make a different assumption:Some contributions are small and can be ignored.Others are known to be dominated by local form factor uncertainties \rightarrow cancel in $\Delta C_{9}\left(q^{2}\right)$.
\square The uncertainty from $\mathcal{H}_{\mathrm{WA}}^{(p)}$ dominates the real components - assume correlated between B^{+} and B^{-}.
\square The uncertainty from $\mathcal{H}_{\text {nonf,spect }}^{(p)}$ dominates the imaginary components - assume correlated between B^{+}and B^{-}.Assume points at different q^{2} points in the same component are correlated.

Toy studies

Use toys to study fit stability and to estimate expected precision.

\square We run toys at the SM, using hadronic parameters obtained from fits to negative q^{2} points ([See slide 16]), these are compatible with [2015 Hambrock et al.].Fit B^{+}and B^{-}simultaneously sharing C_{10}, C_{9} and the phase of C_{9} (flipping sign under $C P$).Fix the light quark continuum contribution ($Y_{\text {light }}$ quark continuum $\left(q^{2}\right)$).Float both the phase and magnitude the $Y_{c \bar{c}}^{2 P}\left(q^{2}\right)$ component, and separately for both B^{+}and B^{-}.Avoid local minima by fitting each generated toy multiple times from random start points and pick lowest $\mathcal{N} \mathcal{L} \mathcal{L}$.

Alex Marshall

$B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$
$13 / 21$

Toy studies - fit technicalities

\square Select only events $\pm 40 \mathrm{MeV}$ around B mass, fit B mass constrained q^{2}.The detector resolution (assume at J / ψ) is convolved with the fit model using a Fast Fourier Transform, and the same resolution function as used in [$B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$- LHCb] is employed.A combinatorial background shape is included.We employ simple q^{2}-dependent efficiency function based on that of $\left[B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}\right.$- LHCb].Constraints are employed on the BFs of resonances from existing measurements (based on BF and $A_{C P}$ measurements).

$\left[B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right.$binned - LHCb]

Choosing a q^{2} region to fit

With the statistics available from LHCb run $1+2$ it is no surprise that we cannot float the parameters of the open charm resonances.We, therefore, suggest cutting out the open charm region.\triangleright We cut q^{2} just below the $\psi(3770)$ resonance.This avoids model dependence related to fixing these parameters.

Hadronic contributions with $q^{2}-9 \mathbf{f b}^{-1}$Pick starting hadronic parameters such that $\Delta C_{9}\left(q^{2}\right)$ distributions are compatible with [2015 Hambrock et al.].

Compare uncertainty of $\Delta C_{9}\left(q^{2}\right)$ for three scenarios:

Using just the $q^{2}<0$ information...... then adding BF constraints.... then adding LHCb run $1+2$ pseudo-data.

The improvement in sensitivity to non-local contributions from adding $9 \mathrm{fb}^{-1} \mathrm{LHCb}$ data is small.

Hadronic contributions as a function of $q^{2}-300 \mathrm{fb}^{-1}$We can repeat the same exercise using $300 \mathrm{fb}^{-1}$ of LHCb data (~2035)This brings the $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$ event yields to similar to LHCb run $1+2 B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$yields.

At this point the LHCb data is providing a clear improvement in sensitivity to non-local contributions.

\square We run fits to generated pseudo-datasets representative of $9 \mathrm{fb}^{-1}$ of LHCb data.Fit each dataset both with and without the $q^{2}<0$ constraint, as such any differences are more significant.Report uncertainties from Hesse matrix and combine any bias into the overall uncertainty.Largest improvements are in the phases of the resonances, and both the phases and the magnitudes of the $Y_{c \bar{c}}^{2 P}\left(q^{2}\right)$.This increase in sensitivity to non-local parameters translates into better precision on the Wilson coefficients describing the short-distance physics.

How much does the $q^{2}<0$ information add?

Large correlation between C_{9} and C_{10} :\triangleright This is expected. C_{9} and C_{10} can swap out so long as $\mathcal{B}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)_{\text {EWP }}$ remains satisfied.

\triangleright This is especially true in the case of small interference with non-local contributions.

Unconstrained fits are unfeasible. The build-up of results at $C_{10} \approx 0$ makes up a significant fraction of toys.

Parameter	$\sigma_{\text {residuals }}$ un-constrained	$\sigma_{\text {residuals }}$ constrained
C_{10}	2.54	1.41
C_{9}	1.39	1.12
$\delta_{C_{9}}$	0.96	0.34

How does the picture change with more data?

\square With $300 \mathrm{fb}^{-1}$ the expected $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$event yields are similar to those of LHCb run $1+2$ $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$yields.We can now float the open charm resonance parameters.
\square Yet to run more than a few toys here, however, we expect the constraint should become less essential but still relevant.

Conclusion

We have a procedure that demonstrates it possible to fit $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$at LHCb in an unbinned way fully accounting for CPV, the largest non-local contributions and all interference effects.The $q^{2}<0$ information and the $B F$ constraints do the heavy lifting on pinning down the hadronic components of $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$, the current LHCb dataset is not large enough to independently control these components.We find that employing $q^{2}<0$ information from QCD factorization and light-cone sum rule techniques as a constraint in the likelihood of fits to LHCb data is essential for fits to current and near-future data sets.We are working to publish these studies in arXiv:2306. XXXX.

Thanks for listening

$$
B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}
$$

BACKUP SLIDES

How much does the $q^{2}<0$ information add? Validation fits

Parameter	$\sigma_{\text {residuals }}$ un-constrained	$\sigma_{\text {residuals }}$ constrained
$A_{C P}$	9.5×10^{-4}	7.7×10^{-4}
$\mathcal{B}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)$	3.0×10^{-9}	3.1×10^{-9}
$\mathcal{B}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)_{E W P}$	1.5×10^{-9}	7.3×10^{-10}
C_{10}	2.67	1.44
C_{9}	1.44	1.14
$\delta_{C_{9}}$	0.93	0.34
$\delta_{J / \psi}^{B^{+}}$	1.46	0.63
$\eta_{\omega(782)}^{B^{+}}$	2.96	3.04
$\delta_{\omega(782)}^{B^{+}}$	1.42	0.94
$\eta_{\psi(2 S)}^{B^{+}}$	17.60	16.10
$\delta_{\psi(2 S)}^{B^{+}}$	1.32	0.71
$\eta_{\rho(770)}^{B^{+}}$	0.60	0.60
$\delta_{\rho(770)}^{B^{+}}$	1.12	0.84

Parameter	$\sigma_{\text {residuals }}$ un-constrained	$\sigma_{\text {residuals }}$ constrained
$\eta_{2 P}^{B^{+}}$	3.02	0.95
$\delta_{2 P}^{B^{+}}$	1.61	1.18
$\delta_{J / \psi}^{B^{-}}$	1.31	1.08
$\eta_{\omega(782)}^{B^{-}}$	4.32	4.30
$\delta_{\omega(782)}^{B^{-}}$	1.86	1.31
$\eta_{\psi(2 S)}^{B-}$	21.69	21.96
$\delta_{\psi(2 S)}^{B-}$	1.43	1.14
$\eta_{\rho(770)}^{B^{-}}$	0.62	0.62
$\delta_{\rho(770)}^{B-}$	1.57	0.58
$\eta_{2 P}^{B^{-}}$	4.97	0.90
$\delta_{2 P}^{B-}$	1.51	1.33

Build up at $C_{10} \approx 0$

\square Most likely these are toys stuck at a local minimum, with the correct start point these would converge properly.
\triangleright Current investigating this - looks promising
$\square C_{10}$ always appears as $\left|C_{10}\right|^{2}$ and so the PDF symmetrical around $C_{10} \approx 0$

$$
\begin{aligned}
\frac{d \Gamma\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)}{d q^{2}} & =\frac{G_{F}^{2} \alpha^{2}\left|V_{t b} V_{t d}^{*}\right|^{2}}{2^{7} \pi^{5}}|\boldsymbol{k}|\left\{\frac{2}{3}|\boldsymbol{k}|^{2} \beta_{+}^{2}\left|C_{10} f_{+}\left(q^{2}\right)\right|^{2}\right. \\
& +\frac{m_{\ell}^{2}\left(M_{B}^{2}-M_{\pi}^{2}\right)^{2}}{q^{2} M_{B}^{2}}\left|C_{10} f_{0}\left(q^{2}\right)\right|^{2} \\
& \left.+|\boldsymbol{k}|^{2}\left[1-\frac{1}{3} \beta_{+}^{2}\right]\left|C_{9}^{e f f, B^{ \pm}} f_{+}\left(q^{2}\right)+2 C_{7}^{e f f} \frac{m_{b}+m_{d}}{M_{B}+M_{\pi}} f_{T}\left(q^{2}\right)\right|^{2}\right\}
\end{aligned}
$$$C_{10}$ and C_{9} are hard to separate and are somewhat interchangeable - so long as the $\mathcal{B}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)_{E W P}$ remains satisfied.

\square We could use $B_{s} \rightarrow \mu^{+} \mu^{-}$results ($C_{10}-C_{10}^{\prime}$) to constrain C_{10} however this would require us to assume $C_{10}^{\prime}=0$ as our C_{10} is really

Comparison to current limits

Reduce limit to one corner of the circleCurrent limit assumes real C_{9}

[^0]: ${ }^{1}$ This requires an assumption of no (pseudo-)scalar and (pseudo-)tensor new physics.

