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Introduction

O] Previous binned (in g?) measurement of
B(BE* — n¥utp~) and
Acp(BE = ntputp=) [BE — n¥putu~
binned - LHCb]

[J Recent developments from both theory and
experiment allow for the possibility of unbinned
measurements of channels such as
BEf 5 KEptp~ and B — K*0utp—.

[J An unbinned approach exploits the full > s * LHCb APRI3 & HKRI15 8 FNAL/MILC15
fae® .
shape information. :u I LHICb ]
[J Fit the g2 spectra of BY — ¥ utp— = .
extracting Co (+ phase) and Cyo, floating the GED
majority of non-local parameters. 2 =
ot ]
[J The lower stats of this channel motivates & E
incorporating a constraint from theory to help g
pin down hadronic contributions. o ]
[J Such an approach maximises the experimental
|
sensitivity to new physics contributions in 20
BE — afutp decays. g2 (GeV¥c?)
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Differences with respect to B* — K*ptp~
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[ |Vis/Vig|? 22 - greatly reduced decay rate across the board.

> Is this the case for any NP? Is NP minimal flavour violating?

[ The p and w resonances are more significant (relative to EW penguin mode) due to the additional
CKM suppression of EW penguin mode.

[J Contributions from weak annihilation and light quark loops (the light quark continuum) cannot be
ignored as they are in BT — KTt~ for the same reason.

[ Fitting B* and B~ separately is essential due to the potential for large CP-asymmetries in
BE — n¥putpu~ - even in the SM.
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Differences with respect to B* — K*ptp~
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Experimental considerations:

[J Larger combinatorial background (generally more pions) requires a tighter selection — signal loss.
[] Different physics background considerations - for example, significant BE — Kfmu"'u_

[J Can potentially nicely avoid floating any resolution parameters - by extracting these parameters
from the higher statistics BY¥ — KT~ results.
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Describing the decay rate

[0 The B* — 7t~ decay can be fully described with two variables, g2 and cos(6;).

[0 For now we integrate over cos(6y).

The decay rate is then as follows!:

dr(B* — ntutp™) _ GZo?|Vyp V2

2
k{31252 o ()

dq? 2775
m2(M2_M2)2
‘lL‘agxzz‘lL‘W(io@(QQ)F
B
1 + mp + my
w2l -t 2] CoMBE £ (42) 1 e Mb
I [1- 562 e ) 2 et

where non-local components (Y(g?)) are baked into C§,

G"(d%) = Co+ Y(d).

1 This requires an assumption of no (pseudo-)scalar and (pseudo-)tensor new physics.
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Building the g < 0 constraint

[J Non-local contributions to BT — w¥putp~
can be computed in the g2 < 0 region as in
[2015 Hambrock et al.].

> Employing the operator-product expansion,
QCD factorization and light-cone sum rule
techniques to compute the @),
[ The sum of all the relevant contributions can
be related to AGy(q?) at various points in the
g° < 0 region:

MH(e?) + AH (%))

AGCy(q?) = —167°
g(q ) a >\tf+(q2)

[ Build the constraint using the following
dispersion relation:

AGy(q%) — AG(q3) =
(@ = )| Yould®) + Y (a®)+
Ylight quark continuum(qz) + YJ/w,w(ZS),.”(qz)] .
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Describing the hadronic contributions -

C$"(q*) = Go + Y(4?)

2
Ylight quark continuum(q )

[J Non-local components are handled by combining two dispersion relations (#(*) and #()) into one:

ACy(q?) — ACy(qp) = (a° — @7) [Yp,w(qZ) + Y22 () + Yiight quark continuum(q”) + YJ/¢,¢(25),<.4(q2)].

0 In B¥ — 7% utu~, both the rare mode

2
Ylight quark continuum(q )

(Vip V) and these light quark diagrams
(Vup V) go as ~ A3,
> In contrast in B¥ — Ki;fr
(Vi Ve ) goes as ~ A2,

©~ the rare mode

L B e ML I m

— Yioclg) ]

Yioc@® ]
Yioca® -

Alxxxxlxx

[2015 Hambrock et al.]
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Describing the hadronic contributions - Y2F(g?)

C§"(q%) = Co + Y(d)

[J Non-local components are handled by combining two dispersion relations (#(*) and #()) into one:

ACQ(q2) - AC9(CI§) = (q2 - qg) [Yp,w(qZ) + Yc2cf,(q2) + Y/ight quark continuum(q2) + YJ/¢,¢(2S),4.4(‘72)]-

. o Uapy oy Y (4?)
[0 2P charmonium contribution YZZ (g°) is the : e : —
following rescattering: (:'? F — Y ]
2 1asf oD E
X f DD* ]
BT = nt*MM — aFputp— 100 F DD’ ~4
0.75 ; é
MM’ = {DD, DD*, D*D*} E ]
0.50 - ]
025 ]
[ Following the recipe in [2020 Cornella et al.] 000k

that models the two particle spectral density as E W ]

2-body phasespace accounting for angular S025F i T

momentum. 2 2
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Describing the hadronic contributions - Y2F(g?)

C$"(q?) = Go + Y(4?)

[J Non-local components are handled by combining two dispersion relations (#(*) and #()) into one:

ACy(q?) — ACy(qp) = (a° — a7) [Yp,w(tf) + Y22 () + Yiight quark continuum(q°) + YJ/w,w(2S),4.4(q2)j|-

val(q?)

& T LI T T T '4
‘? — Yy ]
) S 15k b e

[J Approximate the sum of DD, D*D* and DD* S : pD*
contributions as a single component with a 1ooE b E
single magnitude and phase. 0‘75; ]
050 F 7
025F 7
0.00¢ TS — :
—025f o e ]
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Describing the hadronic contributions - Resonances
" (a%) = Co+ Y(d%)

[J Non-local components are handled by combining two dispersion relations (’H(“) and ’H(C)) into one:

ACg(qz) - AC9(qg) = (q2 - qg) [Yp,w(q2) + YE;(q2) + ’//ight quark continuum(qQ) + YJ/z/)ﬂ/J(ZS),“.(qQ)]'

1Yo, (a%) + Y/ ws),... (a2

[J Resonances are described with relativistic w [ 1
Breit—Wigner distributions. ]
[J Each resonance has a unique phase (dy) and a
unique magnitude (ny) for the BT and the B~ ““ | 3
PDF. o 1
|

> This enables us to model any CP-violation. el A ]
\ |

[J We introduce constraints on resonance b /\\ \ / ‘IR\ (\\ ]
branching fractions using existing / \~/ \‘\N \‘,«'\\\7
measurements (BF o 72). \‘ “\ \

o TR o T o
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B — 7 local form factors

[ Taken from [2021 Leljak et al.].
[J Nominal is the K = 4 LCSR+LQCD option.

> K is the maximal order of the z-expansion.

The B — 7 form factors from QCD and their impact
on | V|

[J In our fit the form factor parameters are fixed.

Domagoj Leljak,® Blazenka Meli¢,* Danny van Dyk®
. ) ) *Rudjer Boskovic Institute, Division of Theoretical Physies, Bijenicka 54, HR- 10000 Zagreb, Croa-
coefficients as a systematic using the tia

Y Technische Universitit Miinchen, James-Franck-Strafle 1, 85748 Garching, Germany

[J We will assess an uncertainty on the Wilson

covariance matrix provided in [2021 Leljak et E-mail: donagoj.leljak@irb.hr, melic@irb.hr, danny.van.dyk@gmail.com

all].
TR e s A e
w LCSR+LQCD LCSR
parar. K=3 K=4 K=3
f41(0) 0.23730T | 0.23573613| 0.28370 8
b —238%08  [-2452841 | 10288
by —0.8200% [ -0.2f}3 | -28I1%
by —0.9+42
100 50 o 50 150 1’0 o £ 1 g o - [
& [Gev?] & [GeV?
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Correlations in the constraint

We do not have access to the correlations
between the individual pieces of the g% < 0
information, so in our fits we make the assumption
of no correlations (a conservative choice).

If one did wish to make a different assumption:

[J Some contributions are small and can be
ignored.

[J Others are known to be dominated by local
form factor uncertainties — cancel in ACy(g?).

[J The uncertainty from Hi,‘;,)A dominates the real

components - assume correlated between BT
and B~.

[J The uncertainty from "Hff))nf’spect

imaginary components - assume correlated
between Bt and B~.

dominates the

[] Assume points at different g2 points in the
same component are correlated.

Alex Marshall
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Toy studies

Use toys to study fit stability and to estimate expected precision.

[0 We run toys at the SM, using hadronic parameters obtained from fits to negative g points ([See

slide 16]), these are compatible with [2015 Hambrock et al.].
[ Fit BT and B~ simultaneously sharing Cig, Co and the phase of Gy (flipping sign under CP).
O Fix the light quark continuum contribution (Yjignt quark continuum(G?))-
[ Float both the phase and magnitude the YCQEP(qQ) component, and separately for both B and B~.
[0 Avoid local minima by fitting each generated toy multiple times from random start points and pick

lowest N'LL.
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Toy studies - fit technicalities

[0 Select only events +40 MeV around B mass, fit B mass constrained q2.

[J The detector resolution (assume at J/%)) is convolved with the fit model using a Fast Fourier
Transform, and the same resolution function as used in [Bi — KEptp~ - LHCb] is employed.

[J A combinatorial background shape is included.

|

We employ simple g2-dependent efficiency function based on that of [Bi — KEutu— - LHCb].

[J Constraints are employed on the BFs of resonances from existing measurements (based on BF and
Acp measurements).

o~ 4 T o R‘EGJON T T q 10 Constrained wxxxxxX physics
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> v o] 13) x phngii
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Choosing a ¢ region to fit

[ With the statistics available from LHCb run 1 4 2 it is no surprise that we cannot float the
parameters of the open charm resonances.
[J We, therefore, suggest cutting out the open charm region.
> We cut g° just below the 1(3770) resonance.

[0 This avoids model dependence related to fixing these parameters.
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Hadronic contributions with g

[J Pick starting hadronic parameters
such that AGy(q?) distributions are
compatible with [2015 Hambrock et
al.].

Compare uncertainty of ACy(g?) for
three scenarios:

[0 Using just the g% < 0 information...
[J ... then adding BF constraints.

[ ... then adding LHCb run 1 4 2
pseudo-data.

The improvement in sensitivity to
non-local contributions from adding
9 fb~! LHCb data is small.
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Hadronic contributions as a function of ¢° - 300 fb—!

[J We can repeat the same exercise
using 300 fb—1 of LHCb data
(~ 2035).
[J This brings the BT — n¥putpu—
event yields to similar to LHCb
run 1 + 2 BT — KEputpu— yields.
At this point the LHCb data is providing
a clear improvement in sensitivity to
non-local contributions.
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How much does the g? < 0 information add?

[~ B Un-constrained
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[] We run fits to generated pseudo-datasets representative of 9 fb—1 of LHCb data.

[J Fit each dataset both with and without the g2 < 0 constraint, as such any differences are more
significant.

[0 Report uncertainties from Hesse matrix and combine any bias into the overall uncertainty.

[ Largest improvements are in the phases of the resonances, and both the phases and the magnitudes
of the Y22 (¢?).

[J This increase in sensitivity to non-local parameters translates into better precision on the
Wilson coefficients describing the short-distance physics.
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How much does the g? < 0 information add?

5 ‘ ‘ ‘ ‘ “ 0‘-‘ » 5 : : : : : "
b ] b
“I' Un-constrained 1 “I  Constrained .
[J Large correlation between Cg and  Cio f o 1 Go f . .
Cio: O L.
> This is expected. Cy and Cjp can - *. ] ot R * "
swap out so long as b . ] b Lot
B(BE = n¥ it 1™ )ewp remains S e
satisfied. G “ Go
> This is especially true in the case of Parameter ‘ O residuals UN-constrained ‘ O residuals constrained
small interference with non-local Cio 2.54 1.41
contributions. Gy 1.39 112
de 0.96 0.34

[J Unconstrained fits are unfeasible.
The build-up of results at Cip = 0
makes up a significant fraction of
toys.

BN Un-constrained
BN Constrained
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How does the picture change with more data?

[] With 300 fb~! the expected B¥ — nEtpu~ event yields are similar to those of LHCb run 1 + 2
BE — KTyt~ vyields.

[J We can now float the open charm resonance parameters.

[J Yet to run more than a few toys here, however, we expect the constraint should become less
essential but still relevant.
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Conclusion

[J We have a procedure that demonstrates it possible to fit

B* — 7% put i~ at LHCb in an unbinned way fully 68% interval in Gy vs Cyo
accounting for CPV, the largest non-local contributions S i i i i
T % erval B
and all interference effects. O f b sl
[0 The g2 < 0 information and the BF constraints do the i ]

heavy lifting on pinning down the hadronic components
of B¥ — 7%t~ the current LHCb dataset is not
large enough to independently control these components. s
0 We find that employing g2 < 0 information from QCD
factorization and light-cone sum rule techniques as a
constraint in the likelihood of fits to LHCb data is o
essential for fits to current and near-future data sets. - : . !

[J We are working to publish these studies in
arXiv:2306. XXXX.

W Un-constrained
W Constrained

Thanks for listening
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How much does the ¢° < 0 information add? Validation fits

Normalised uncertainity

0.25
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B Constrained

Acp
Bowr
Cyo
Cy

dc,

b
)
i)
MBos)

L

Parameter O residuals UN-constrained O residuals constrained Parameter O residuals UN-constrained O residuals constrained

Acp 95x10°* 77x10°° ngs 3.02 0.95
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Build up at C;p =0

[J Most likely these are toys stuck at a local minimum, with the correct start point these would
converge properly.
> Current investigating this - looks promising
[ Cio always appears as | Cio|? and so the PDF symmetrical around Cyg ~ 0

dr(B* — ntputp=)  G2a?|Vyp V|2 20 s o2
= k< |k Crof.
e s LA LICHISTACY]

m2(l\/l2 —M2)2
—B T | Cofo(q?)
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1 fF,B% 2 # Mp + my N
+k21—72] ceBT f +ocsff 2~ d ¢ ,
II{ 354G +(q%) 7MB+MWT(q)

[0 Gyp and Cg are hard to separate and are B TR (6 s e
somewhat interchangeable - so long as the .
B(BET — n¥ut ) ewp remains satisfied. ‘ .

[J We could use Bs — ptp™ results (Cio — C{y) ' L
to constrain Cijg however this would require us e Y | %
to assume C{O = 0 as our Cyg is really 1 ;“"" ‘ ‘ ‘ LH

Cio + Clp-



Comparison to current limits

[ [ 68.3% interval ]
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