Developments in

$b \rightarrow c \tau \nu$ decays

Judd Harrison \& Martin Jung

Beyond the Flavour Anomalies IV Barcelona, 20th of April 2023

Lepton-non-Universality in $b \rightarrow c \tau \nu$

$$
R(X) \equiv \frac{\operatorname{Br}(B \rightarrow X \tau \nu)}{\operatorname{Br}(B \rightarrow X \ell \nu)}
$$

- Partial cancellation of uncertainties
\leftrightarrows Precise predictions (and measurements)

NP interpretation:
[talks by B. Stefanek and F. Wilsch] Note: only 1 result $\geq 3 \sigma$ from SM In the following: discuss SM + NP predictions

Lepton-non-Universality in $b \rightarrow c \tau \nu$

$$
R(X) \equiv \frac{\operatorname{Br}(B \rightarrow X \tau \nu)}{\operatorname{Br}(B \rightarrow X \ell \nu)}
$$

- Partial cancellation of uncertainties
\leftrightarrows Precise predictions (and measurements)

NP interpretation:
[talks by B. Stefanek and F. Wilsch]

- $R\left(D^{(*)}\right)$: BaBar, Belle, LHCb \rightarrow average $\sim 3-4 \sigma$ from SM

More flavour $b \rightarrow c \tau \nu$ observables:

- τ-polarization ($\tau \rightarrow$ had) [1608.06391]
- $B_{c} \rightarrow J / \psi \tau \nu$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_{c}
- $b \rightarrow X_{c} \tau \nu$ by LEP
- D^{*} polarization (Belle)
- $R\left(\Lambda_{c}\right) \rightarrow$ below SM

Note: only 1 result $\geq 3 \sigma$ from SM In the following: discuss SM + NP predictions

Exclusive decays: Form factors

In exclusive decays, hadronic information encoded in Form Factors They parametrize fundamental mismatch:

Theory (e.g. SM) for partons (quarks) vs.
Experiment with hadrons
$\left\langle D_{q}\left(p^{\prime}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}_{q}(p)\right\rangle=\left(p+p^{\prime}\right)^{\mu} f_{+}^{q}\left(q^{2}\right)+\left(p-p^{\prime}\right)^{\mu} f_{-}^{q}\left(q^{2}\right), q^{2}=\left(p-p^{\prime}\right)^{2}$
Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P - and T -symmetry of QCD $f_{ \pm}\left(q^{2}\right)$: real, scalar functions of one kinematic variable How to obtain these functions?
4 Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?
4 Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?
q^{2} dependence

- q^{2} range can be large, e.g. $q^{2} \in[0,12] \mathrm{GeV}^{2}$ in $B \rightarrow D$
- Calculations give usually one or few points
\leftrightarrows Knowledge of functional dependence on q^{2} crucial
- This is where discussions start...

Give as much information as possible independently of this choice!

q^{2} dependence

- q^{2} range can be large, e.g. $q^{2} \in[0,12] \mathrm{GeV}^{2}$ in $B \rightarrow D$
- Calculations give usually one or few points
\rightarrow Knowledge of functional dependence on q^{2} crucial
- This is where discussions start...

Give as much information as possible independently of this choice!

In the following: discuss BGL and HQE (\rightarrow CLN) parametrizations q^{2} dependence usually rewritten via conformal transformation:

$$
z\left(t=q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}
$$

$t_{+}=\left(M_{B_{q}}+M_{D_{q}^{(*)}}\right)^{2}$: pair-production threshold
$t_{0}<t_{+}$: free parameter for which $z\left(t_{0}, t_{0}\right)=0$
Usually $|z| \ll 1$, e.g. $|z| \leq 0.06$ for semileptonic $B \rightarrow D$ decays
\leftrightarrows Good expansion parameter

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]
FFs are parametrized by a few coefficients the following way:

1. Consider analytical structure, make poles and cuts explicit
2. Without poles or cuts, the rest can be Taylor-expanded in z
3. Apply QCD symmetries (unitarity, crossing)

4 dispersion relation
4. Calculate partonic part (mostly) perturbatively

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]
FFs are parametrized by a few coefficients the following way:

1. Consider analytical structure, make poles and cuts explicit
2. Without poles or cuts, the rest can be Taylor-expanded in z
3. Apply QCD symmetries (unitarity, crossing)
\rightarrow dispersion relation
4. Calculate partonic part (mostly) perturbatively

Result: Model-independent parametrization

$$
F(t)=\frac{1}{P(t) \phi(t)} \sum_{n=0}^{\infty} a_{n}\left[z\left(t, t_{0}\right)\right]^{n} .
$$

- a_{n} : real coefficients, the only unknowns
- $P(t)$: Blaschke factor(s), information on poles below t_{+}
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_{n}^{2} \leq 1$

Series in z with bounded coefficients (each $\left|a_{n}\right| \leq 1$)!
4 Uncertainty related to truncation is calculable!

$$
B \rightarrow D \ell \nu
$$

$B \rightarrow D \ell \nu$, aka "The teacher's pet":

- Excellent agreement between experiments [BaBar'09,Belle'16]
- Excellent agreement between two lattice determinations [FNAL/MILC'15,HPQCD'16]
4 Lattice data inconsistent with CLN parametrization! (but consistent w/ HQE@1/m, discussed later)
- BGL fit [Bigi/Gambino'16] :

$$
R(D)=0.299(3)
$$

See also [Jaiswal+,Berlochner+'17,MJ/Straub'18,Bordone/MJ/vanDyk'19]

$f_{+, 0}(z)$, inputs:

- FNAL/MILC'15
- HPQCD'16
- BaBar'09
- Belle'16
$V_{c b}+R\left(D^{*}\right) \mathrm{w} /$ data + lattice + unitarity [Gambino/MJ/Schacht'19]
Belle'18(+'17) provide FF-independent data for 4 single-differential rates BGL analysis:
- Datasets compatible
- d'Agostini bias + syst. important
- Expand FFs to z^{2}
$\rightarrow 50 \%$ increased uncertainties

- Belle'18: no parametrization dependence
- Belle'17 never published \rightarrow replace w/ Belle'23, not available yet
- Tension w/ inclusive reduced, but not removed

$$
R\left(D^{*}\right)=0.253_{-0.006}^{+0.007} \quad \text { (including LCSR point) }
$$

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1 / m_{b, c}$ and α_{s}
- Higher orders in $1 / m_{b, c}$: FFs remain related
\rightarrow Parameter reduction, necessary for NP analyses!

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1 / m_{b, c}$ and α_{s}
- Higher orders in $1 / m_{b, c}$: FFs remain related

4 Parameter reduction, necessary for NP analyses!
CLN parametrization [Caprini+'97]:
HQE to order $1 / m_{b, c}, \alpha_{s}$ plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \rightarrow D$ and $B \rightarrow D^{*}$)
Dealt with by varying calculable ($\left(\mathbb{1} / m_{b, c}\right.$) parameters, e.g. $h_{A_{1}}(1)$
4 Not a systematic expansion in $1 / m_{b, c}$ anymore!
\rightarrow Related uncertainty remains $\mathcal{O}\left[\Lambda^{2} /\left(2 m_{c}\right)^{2}\right] \sim 5 \%$, insufficient

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1 / m_{b, c}$ and α_{s}
- Higher orders in $1 / m_{b, c}$: FFs remain related
\Leftrightarrow Parameter reduction, necessary for NP analyses!
CLN parametrization [Caprini+'97]:
HQE to order $1 / m_{b, c}, \alpha_{s}$ plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \rightarrow D$ and $B \rightarrow D^{*}$) Dealt with by varying calculable ($\left(\mathbb{1} / m_{b, c}\right.$) parameters, e.g. $h_{A_{1}}(1)$
4 Not a systematic expansion in $1 / m_{b, c}$ anymore!
\rightarrow Related uncertainty remains $\mathcal{O}\left[\Lambda^{2} /\left(2 m_{c}\right)^{2}\right] \sim 5 \%$, insufficient Solution: Include systematically $1 / m_{c}^{2}$ corrections [Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20] ,using [Falk/Neubert'92]
[Bernlochner+'22] : model for $1 / m_{c}^{2}$ corrections \rightarrow fewer parameters

Theory determination of $b \rightarrow c$ Form Factors

[Bordone/MJ/vanDyk'19,Bordone/Gubernari/MJ/vanDyk'20]
For general NP analysis, FF shapes needed from theory! Fit to all $B \rightarrow D^{(*)}$ FFs, using lattice, LCSR, QCDSR and unitarity [CLN,BGL,HPQCD'15'17,FNAL/MILC'14'15,Gubernari+'18,Ligeti+'92'93] $\mathrm{k} / \mathrm{I} / \mathrm{m}$: order in z for leading/subleading/subsubleading IW functions
4 $2 / 1 / 0$ works, but only $3 / 2 / 1$ captures uncertainties
\rightarrow Consistent $V_{c b}$ value from Belle'17+'18
\rightarrow Predictions for diff. rates, perfectly confirmed by data

Form-factor truncation

Key question: Where do we truncate our expansions?
\rightarrow A [Bernlochner+'19]: include parameter only if χ^{2} decreases significantly
4 B (GJS, BGJvD): include one "unnecessary" order Comments:

- Large difference, $\sim 50 \%$ difference in uncertainty
- Motivation for $\mathrm{A}:$ convergence, avoid overfitting
- Motivation for B : avoid underestimating uncertainties
\leftrightarrows Different perspectives: only describing data, A is ok.
However: we extrapolate to regions where we lack sensitivity
Example: $g(w)$ from FNAL/MILC
- perfect description at $\mathcal{O}(z)$
- large impact from $\mathcal{O}\left(z^{2}\right)$
- Nevertheless: $\mathcal{O}\left(z^{2}\right) \leq 6 \% \times \mathcal{O}(z) \frac{\bar{\Xi}^{0}{ }_{0}^{0.25}}{0.20}$
\rightarrow overfitting limited
Just because you're not sensitive, doesn't mean it's not there!

Priors and potential biases

Typical error estimate:

$$
\delta X \sim \mathcal{O}(1) \times \text { known factor }
$$

4 What's " $\mathcal{O}(1)$ "?

- Answer seems to be community-dependent
- Often in lattice analyses: gaussian around 0 , width 1
- BGJvD HQET FFs: flat range [-20,20]
\leftrightarrows potentially large differences
\rightarrow needs to be checked and communicated

Similarly: treatment of BGL coefficients

- FNAL/MILC and HPQCD:
series in $(w-1)^{n}$
- Priors can be strong in BGL space
- Plot: prior information, only (HPQCD)
\leftrightarrows Order of final result

Form Factors

The effective Hamiltonian relevant for semileptonic $b \rightarrow c$ decays can be written, assuming left-handed neutrinos,

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}=\sqrt{2} G_{F} V_{c b} & {\left[g g_{V} \bar{c} \gamma_{\mu} b \bar{\ell}_{L} \gamma^{\mu} \nu_{L}+g_{A} \bar{c} \gamma_{\mu} \gamma_{5} b \bar{\ell}_{L} \gamma^{\mu} \nu_{L}\right.} \\
& +g_{S} \bar{c} b \bar{\ell}_{R} \nu_{L} \\
& +g_{P} \bar{c} \gamma_{5} b \bar{\ell}_{R} \nu_{L} \\
& \left.+g_{T} \bar{c} \sigma_{\mu \nu} b \bar{\ell}_{R} \sigma^{\mu \nu} \nu_{L}+\text { h.c. }\right]
\end{aligned}
$$

matrix elements are parameterised in terms of form factors (FFs)

$$
\begin{aligned}
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} b|\bar{B}\rangle= & i \sqrt{M_{B} M_{D^{*}}} \varepsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta} h_{v} \\
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} \gamma^{5} b|\bar{B}\rangle= & \sqrt{M_{B} M_{D^{*}}}\left[h_{A_{1}}(w+1) \epsilon^{* \mu}\right. \\
& \left.-h_{A_{2}}\left(\epsilon^{*} \cdot v\right) v^{\mu}-h_{A_{3}}\left(\epsilon^{*} \cdot v\right) v^{\prime \mu}\right] \\
\left\langle D^{*}\right| \bar{c} \sigma^{\mu \nu} b|\bar{B}\rangle= & -\sqrt{M_{B} M_{D^{*}} \varepsilon^{\mu \nu \alpha \beta}\left[h_{T_{1}} \epsilon_{\alpha}^{*}\left(v+v^{\prime}\right)_{\beta}\right.} \\
& \left.+h_{T_{2}} \epsilon_{\alpha}^{*}\left(v-v^{\prime}\right)_{\beta}+h_{T_{3}}\left(\epsilon^{*} \cdot v\right) v_{\alpha} v_{\beta}^{\prime}\right],
\end{aligned}
$$

$B \rightarrow D^{*}$ vector, axial-vector and tensor form factors for the full q^{2} range from lattice QCD [2304.03137]

Use "Heavy-HISQ" approach:

- Compute FFs on multiple lattices using heavy quark h with mass m_{h}, using Highly Improved Staggered Quark action for all quarks
\rightarrow Small discretisation effects - no tree level a^{2} effects, greatly reduced (am) ${ }^{4}$ effects
\rightarrow High numerical efficiency enables good statistics
\rightarrow Fully relativistic
\rightarrow Nonperturbative renormalisation of currents
- Fit lattice data including discretisation effects, dependence on heavy-quark mass and chiral effects.
We include data for $B_{s} \rightarrow D_{s}^{*}$ FFs, which we include in our fit using $\mathrm{HM} \chi$ PT.
Use second generation MILC $n_{f}=2+1+1$ HISQ gluon field configurations, with $a \approx 0.09 \mathrm{fm}, 0.06 \mathrm{fm}, 0.044 \mathrm{fm}$ and pion masses from 300 MeV down to the physical value.

Our fit function for each FF takes the form

$$
\begin{gathered}
F^{Y^{(s)}}(w)=\sum_{n=0}^{3} a_{n}^{Y}(w-1)^{n} \mathcal{N}_{n}^{Y}+\frac{g_{D^{*} D \pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left(\operatorname{logs}_{S U(3)}^{Y_{S}^{(s)}}-\operatorname{logs}_{S U(3) \mathrm{phys}}^{Y}\right) \\
+\tilde{a}^{Y}\left(\left(\frac{M_{\pi}^{\text {phys }}}{\lambda_{\chi}}\right)^{2}-\left(\frac{M_{\pi(K)}}{\lambda_{\chi}}\right)^{2}\right)
\end{gathered}
$$

where $Y_{(s)}$ labels the form factor, $\mathcal{N}_{n}^{Y} \approx 1$ encodes sea and valence quark mass mistuning effects, and the coefficients, a_{n}^{Y}, for each form factor take the form

$$
a_{n}^{Y}=\sum_{j, k, l=0}^{3} b_{n}^{Y, j k l} \Delta_{h}^{(j)}\left(\frac{a m_{c}^{\mathrm{val}}}{\pi}\right)^{2 k}\left(\frac{a m_{h}^{\mathrm{val}}}{\pi}\right)^{2 l}
$$

where

$$
\Delta_{h}^{(0)}=1, \quad \Delta_{h}^{(j \neq 0)}=\left(\frac{\Lambda}{M_{H_{s}}}\right)^{j}-\left(\frac{\Lambda}{M_{B_{s}}^{\text {phys }}}\right)^{j} .
$$

Take $\mathcal{N}_{n}^{Y} \rightarrow 1, a m_{c} \rightarrow 0, a m_{h} \rightarrow 0, M_{H_{s}} \rightarrow M_{B_{s}}^{\text {phys }}$ and $M_{\pi} \rightarrow M_{\pi}^{\text {phys }}$ to recover physical form factors at the b mass.

SM Form Factors

We compute the SM FFs with good coverage of the full q^{2} range.

Tensor Form Factors

We also compute the tensor FFs.
$R\left(D^{*}\right)$
Comparison to Belle data [1809.03290].

Looks terrible! However, including correlations only $\approx 1.5 \sigma$ tension. We find that when fitting FFs to the Belle data $R\left(D^{*}\right)$ is shifted downwards significantly.

	'lattice-only'	'lattice+experiment'
$R\left(D^{*}\right)$	$0.279(13)$	$0.2471(19)$
$R\left(D_{s}^{*}\right)$	$0.265(9)$	$0.2464(27)$

Comparison with new lattice calculations

Comparison with new lattice calculations

Comparison with new lattice calculations

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- $\mathrm{HQEQ1} / m_{c}^{2}$
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible
- HPQCD and BGJvD compatible

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- $\mathrm{HQEO1} / m_{c}^{2}$
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible
- HPQCD and BGJvD compatible
- Slope HPQCD-FNAL/MILC?

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- $\mathrm{HQEO1} / m_{c}^{2}$
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible

- HPQCD and BGJvD compatible
- Slope HPQCD-FNAL/MILC?
- JLQCD "diplomatic"

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- $\mathrm{HQE@1} / m_{c}^{2}$
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible
- Similar pattern in h_{V} and $h_{A_{3}}$
- Tension between BGJvD and FNAL/MILC in $h_{A_{2}}$

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/ m_{c}^{2}
- Exp (BGL)
- JLQCD prel
- HPQCD'23

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/ m_{c}^{2}
- Exp (BGL)
- JLQCD prel
- HPQCD'23

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- $\mathrm{HQEO1} / m_{c}^{2}$
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\leftrightarrows Compatible. Slope?

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- $\mathrm{HQEO1} / m_{c}^{2}$
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\leftrightarrows Compatible. Slope?
- Deviation HPQCD-BGJvD

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- $\mathrm{HQEO1} / m_{c}^{2}$
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\leftrightarrows Compatible. Slope?
- Deviation HPQCD-BGJvD
- FNAL/MILC close to HPQCD

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- $\mathrm{HQEQ1} / m_{c}^{2}$
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\leftrightarrows Compatible. Slope?

- Deviation HPQCD-BGJvD
- FNAL/MILC close to HPQCD
- Deviation wrt experiment
\leftrightarrows Requires further investigation!

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/ m_{c}^{2}
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\leftrightarrows Compatible. Slope?

- Deviation HPQCD-BGJvD
- FNAL/MILC close to HPQCD
- Deviation wrt experiment
\leftrightarrows Requires further investigation!
- JLQCD "diplomatic"

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1!\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/ m_{c}^{2}
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\leftrightarrows Compatible. Slope?

- Also in R_{0} deviation wrt BGJvD
- JLQCD again "diplomatic"
\leftrightarrows Requires further investigation!
\leftrightarrows Correlations?

Overview over predictions for $R\left(D^{*}\right)$

Overall consistent SM predictions!

"Explaining" $R\left(D^{*}\right)$ by FM/HPQCD \rightarrow NP in $B \rightarrow D^{*}(e, \mu) \nu!$

Conclusions

Semileptonic $b \rightarrow c$ transitions remain exciting!

1. q^{2} dependence of FFs critical

4 Need parametrization-independent data
2. Inclusion of higher-order (theory) uncertainties essential
3. HQE: systematic expansion in $1 / m, \alpha_{s}$, relates FFs
$\rightarrow \mathcal{O}\left(1 / m_{c}\right)(\rightarrow$ CLN $)$ not sufficient anymore
4. Important first LQCD analyses in $B_{(s)} \rightarrow D_{(s)}^{*}$ @ finite recoil

4 HPQCD: First $2+1+1$ results, full q^{2} range!
\leftrightarrows Tensions in ratios - correlations?
5. Despite complications: $R\left(D^{(*)}\right) \mathrm{SM}$ prediction robust!

Central lesson:
Experiment and theory (lattice + pheno) need to work closely together!

Comparison to Bernlochner+'22

Bernlochner et al. also perform HQE analysis $\mathbb{Q} 1 / m_{c}^{2}$. Differences:

- Postulate different counting within HQET

4 Highly constraining model for higher-order corrections

- Avoid use of LCSR (and mostly QCDSR) results
- Include partial α_{s}^{2} corrections
- Include FNAL/MILC results partially
- Expansion in z: 2/1/0 (justified in [Bernlochner+'19])

Observations:

- $1 / m_{c}^{2}$ corrections necessary
- Overall small uncertainties
- $V_{c b}=(38.7 \pm 0.6) \times 10^{-3}$
\rightarrow smaller due to larger $\mathcal{F}(1)$
- $R\left(D^{*}\right)$: agreement w/ BGJvD
- $R(D) \sim 3 \sigma$ from GJS + BGJvD

\rightarrow In my opinion due to model
W

The Dispersive Matrix (DM) Method

Alternative implementation of unitarity [Bourrely+'81,Lellouch'95] :

- Identical starting point as BGL: dispersion relation
- Known information in a matrix with positive determinant

4 Form-factor bounds

- Enables parametrization-free analysis

Implemented recently for $B \rightarrow{ }^{10} D^{*} \ell \nu$ [DiCarlo+'21,Martinelli+' $\left.{ }^{40} 21,22\right]$:

- Use DM w/ new FNAL/MILC data to obtain FF bands
- Calculate $V_{c b}$ bin-wise, combine $d \Gamma / d x$ bins $\left(x=q^{2}, \cos \theta, \ldots\right)$ (including experimental and theoretical correlations)
$\leftrightarrows 2 \times 4 V_{c b}$ values. Claim: 0.5σ to $V_{c b}^{\mathrm{incl}}, 1.3 \sigma$ to $R\left(D^{*}\right)$

The Dispersive Matrix (DM) Method

Differences between DM and GJS [Gambino/MJ/Schacht'19]:

- GJS: Combined fit of lattice and experiment, imposing unitarity
- DM: Unweighted, uncorrelated average of the $4 V_{c b}$ values:

$$
\mu=\frac{1}{N} \sum_{k=1}^{N} x_{k}, \quad \sigma_{x}^{2}=\frac{1}{N} \sum_{k=1}^{N} \sigma_{k}^{2}+\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\mu_{x}\right)^{2}
$$

$\leftrightarrows V_{c b}^{\text {GJS }}=\left(39.2_{-1.2}^{+1.4}\right) \times 10^{-3}, \quad V_{c b}^{\mathrm{DM}}=(40.8 \pm 1.7) \times 10^{-3}$

Binned $V_{c b}$ from Belle'18 data: FNAL/MILC vs JLQCD

Priors and potential biases

Different conclusions starting from identical information Example: $R\left(D^{*}\right)$ extraction from FNAL/MILC data

$R\left(D^{*}\right)$ including kinematical identities and weak unitarity

$$
R\left(D^{*}\right) \stackrel{\mathrm{WU}}{=} 0.269_{-0.008}^{+0.020} \quad \stackrel{\mathrm{FM}}{=} 0.274 \pm 0.010 \quad \stackrel{\text { Rome }}{=} 0.275 \pm 0.008
$$

Difference WU-FM: FM apply prior on BGL coefficients
Difference WU-Rome (educated guess): iterated "unitarity filter"

+ different error estimate
Applying data: $R\left(D^{*}\right)=0.249 \pm 0.001(!)$ universally.

Uncertainty determination

MC points together with χ^{2} profile (minimizing for each FF value) Vertical: CV MC, " $1 \sigma^{\prime \prime}$ MC, symmetric 68.3% interval MC, $\Delta \chi^{2}=1$

