The Cabibbo Angle Anomaly and potential BSM explanations

Matthew Kirk
ICCUB, Barcelona

Institut de Ciències del Cosmos
(mostly based on 2212. 06862 with Crivellin, Kitahara, Mescia)
Beyond the Flavour Anomalies IV - 20 April 2023

CKM Matrix

- 3×3 unitary matrix, by construction
- Implies many relationships between elements
- 9 complex elements, but only 4 parameters
- Including:
$-\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1$

First row unitarity

- $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1$
- $\left|V_{u b}\right|^{2}$ is very small, less than current uncertainties
- So we can approximate: $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}=1$

Cabibbo approximation

- For a 2×2 unitary matrix, there is a very simple form: $\left(\begin{array}{cc}\cos \theta_{C} & \sin \theta_{C} \\ -\sin \theta_{C} & \cos \theta_{C}\end{array}\right)$
- With only one parameter - the Cabibbo angle!

Cabibbo Angle

- SM makes a clear prediction: $\theta_{C}=\arccos V_{u d}=\arcsin V_{u s}=\arctan V_{u s} / V_{u d}$
- But doesn't predict the value

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

What changed?

- Improvements to lattice QCD
$-f_{K} / f_{\pi}$
- FLAG 2017 update $=1.1930 \pm 0.0030\left(N_{f}=2+1+1\right)$
- FLAG 2023 update $=1.1934 \pm 0.0019\left(N_{f}=2+1+1\right)$
$-f_{+}(0)$
- FLAG 2017 update $=0.9706 \pm 0.0027\left(N_{f}=2+1+1\right)$
- FLAG 2023 update $=0.9698 \pm 0.0017\left(N_{f}=2+1+1\right)$

What changed?

- Nuclear corrections to beta decay
- Experimentally, superallowed ($0^{+} \rightarrow 0^{+}$) are known very precisely (around one part per 10000)
- But the theoretical corrections from pure beta decay ($d \rightarrow u \ell \nu$) to nuclear beta decay are complicated

Nuclear corrections

- But the theoretical corrections from pure beta decay $(d \rightarrow u \ell \nu)$ to nuclear beta decay are complicated
- Lots of recent progress in the $\gamma-W$ box EW radiative correction

Nuclear corrections

- $\gamma-W$ box increased by about 3σ, but now has half the error
- See appendix of (Cirigliano, Crivellin, Hoferichter, Moulson)
- However, new analysis of isospin-breaking corrections and other nuclear uncertainties has lead to larger error estimates

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

What's behind this?

- Low energy EFT
- EW scale modifications
- BSM models

Low energy EFT

- Modifications of $2 q 2 \ell$ decays
- Checks from LFU tests of π, K decays

- Modifications of 4ℓ decays - affects G_{F}
- Since G_{F} is a normalisation for semileptonic decays
- Reduces tensions but doesn't solve it

EW scale modifications

- Modifications of $W-q-q^{\prime}$ or $W-\ell-\nu$
- For both: $S U(2)$ invariance demands changes to $Z-q-q$ or $Z-\ell-\ell$
- Other constraints from EWPO, low energy parity violation or $\Delta F=2$

EW scale modifications

- Modifications of LH

$$
W-u-d
$$

- Pull of 2σ relative to SM

EW scale modifications

- Modifications of RH $W-u-d$ and $W-u-s$
- Pull of 3.2σ relative to SM

BSM models

- LQs
- W^{\prime}
- VLLs
- VLQs

BSM models

- LQs
- W'
- VLLs
- VLQs
- Lots of related flavour constraints
- PV, D/K mixing
- Also LHC Drell-Yan

BSM models

- LQs
- W'
- VLLs
- VLQs
- Often comes with a Z'
- That leads to Z mass change, $\Delta F=2$, PV
- Again Drell-Yan

BSM models

- LQs
- W'
- VLLs
- VLQs
- Also alter EW fit through modifications
of $Z-\ell-\ell$
- Decent fit with two VLLs (one with μ coupling, one with e)

(Crivellin, Kirk, Manzari, Montull) 22

BSM models

- LQs
- W'
- VLLs
- VLQs
- Can generate RH currents
- Only one of two tree level BSM options

Vector-like quarks

- 7 representations that couple to SM at tree level

Vector-like quarks

Name	U	D	Q_{1}	Q_{5}	Q_{7}	T_{1}	T_{2}
- Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$	$(3,3)_{\frac{2}{3}}$

Vector-like quarks

Name	U	D	Q_{1}	Q_{5}	Q_{7}	T_{1}	T_{2}
- Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$	$(3,3)_{\frac{2}{3}}$

- $S U(2)$ singlets modify LH W coupling
- (Only one) $S U(2)$ doublet generates RH W couplings
- $S U(2)$ triplets modify LH W coupling

Vector-like quarks

- $S U(2)$ triplets modify LH W coupling
- But with wrong sign

Vector-like quarks

- $S U(2)$ singlets modify LH W coupling
- With right sign!
- But strong constraints from K/D mixing, as well as EWPO and low energy parity violation
- Overall 2σ pull vs SM

Vector-like quarks

- Only $Q_{1} S U(2)$ doublet generates RH W couplings
- Q_{1} with u and d couplings alters $V_{u d}$
- Q_{1} with u and s couplings alters $V_{u s}$
- EWPO less strong, meson mixing almost absent
- Low energy PV important

Vector-like quarks
 $$
Q\left(M_{Q}=2 \mathrm{TeV}\right)
$$

$$
[\mathrm{CKM} \quad-\mathrm{EWPO} \quad-\mathrm{PV} \quad-\text { Global }
$$

Summary

- Improvements in lattice and interesting new developments in beta decay have lead to ~ 3σ anomaly
- VLQs seem a good BSM candidate
- $S U(2)$ doublet Q_{1} in particular

Backup

Low energy EFT ideas

- Modifications of GF / muon decay
- Reduces tensions but doesn't solve it

EW modifications

- Modifications of RH current

2023 with RH Wud, Wus $\approx-10^{-3}$

VLLs - singlet and triplet

- VLLs coupled to muons and electrons
- Good improvement in CKM data
- And also slight improvement in EWPO
- See 2008. 01113

(Crivellin, Kirk, Manzari, Montull)

VLQs - U \& D singlets

VLQs - U \& D singlets

$$
D\left(M_{D}=2 \mathrm{TeV}\right)
$$

Future experiments?

- NA62 could measure $K_{\ell 3} / K_{\mu 2}$
- Two weeks of data could increase tension to 4σ
- See 2208. 11707
(Cirigliano, Crivellin, Hoferichter, Moulson)
- Also new data in
$K_{\mu 2}$ would be good
- Only recent data from KLOE in 2008

Future experiments?

- PIONEER @ PSI (2203.01981)
- Can measure the LFU ratio $\pi^{+} \rightarrow \mu \nu / \pi^{+} \rightarrow e \nu$
- And $\pi^{+} \rightarrow \pi^{0} e \nu\left(\pi_{e 3}\right)$
- $\pi_{e 3}$ is theoretically clean, and can reduce uncertainty further by considering $K_{\ell 3} / \pi_{e 3}$
- See 1911. 04685
(Czarnecki, Marciano, Sirlin)

Cabibbo Angle

$$
\theta_{C}=\arccos V_{u d}=\arcsin V_{u s}=\arctan V_{u s} / V_{u d}
$$

- $K_{\ell 3} \cdot K_{\mu 2} \cdot 0^{+} \rightarrow 0^{+}$

Cabibbo Angle Anomaly

- Roughly 3σ deviation
- Depends how you define it
- See discussion in 1911. 07821
(Grossman, Passemar, Schacht)

