Pushing the QCD frontier in $b \rightarrow$ sll

Beyond the flavour anomalies IV - 19/04/2023

Méril Reboud

Based on:

- Gubernari, van Dyk, JV 2011.09813
- Gubernari, Reboud, van Dyk, JV 2206.03797
- Ahmis, Bordone, Reboud 2208.08937
- Gubernari, Reboud, van Dyk, JV 2305.XXXX

Introduction and Outline

- Nico's talk:
- Local and non-local form factors are the main source of uncertainties in $\mathrm{b} \rightarrow$ sel decays
- Both follow the same analytic structure:

- The GRvDV parametrization diagonalizes the dispersive bounds:

$$
\hat{z}\left(q^{2}\right)=\frac{\sqrt{\hat{t}_{\Gamma}-q^{2}}-\sqrt{\hat{t}_{\Gamma}}}{\sqrt{\hat{t}_{\Gamma}-q^{2}}+\sqrt{\hat{t}_{\Gamma}}}
$$

$$
\widehat{\mathcal{H}}(\hat{z})=\sum_{n=0}^{\infty} \beta_{n} p_{n}(\hat{z})
$$

Orthonormal polynomials of the arc of the unit circle

Introduction and Outline

$$
\begin{aligned}
\sigma_{\text {incl }} & \left(\sim \mathcal{K}_{\bar{s}}^{b}\right)>\left.\sigma_{\text {excl }} \sim \int_{k^{*}} d P S|\sim|^{B}\right|^{2} \\
& \sim \sum_{\lambda} \int_{+h}^{\infty} d q^{2} \omega_{\lambda}\left(q^{2}\right)\left|\mathcal{t}_{\lambda}\left(q^{2}\right)\right|^{2} \\
& \sim \sum_{\lambda} \int_{\operatorname{arc}\left(t_{+}\right)} d z\left|\hat{H}_{\lambda}\left(q^{2}\right)\right|^{2}=\sum_{\lambda i n}\left|\beta_{n}^{\lambda}\right|^{2}
\end{aligned}
$$

ice of

$$
\hat{z}\left(q^{2}\right)=\frac{\sqrt{\hat{t}_{\Gamma}-q^{2}}-\sqrt{\hat{t}_{\Gamma}}}{\sqrt{\hat{t}_{\Gamma}-q^{2}}+\sqrt{\hat{t}_{\Gamma}}} \quad \widehat{\mathcal{H}}(\hat{z})=\sum_{n=0}^{\infty} \beta_{n} p_{n}(\hat{z})
$$

Orthonormal polynomials of the arc of the unit circle

Introduction and Outline

- This talk:

1) The parametrization in practice with $\Lambda_{b} \rightarrow \Lambda^{*} \ell e$
2) Combined analysis of $B \rightarrow K, B \rightarrow K^{*}$ and $B_{s} \rightarrow \phi$ local form factors with improved dispersive bounds
3) Analysis of non-local form factors
4) Benchmark BSM study

I. The method in practice

Example with $\Lambda_{b} \rightarrow \wedge(1520) \ell \ell$

- Inputs:
- LQCD [Meinel, Rendon '21]

$$
\begin{aligned}
& \left.14 \text { Form Factors } \longrightarrow \begin{array}{l}
17 \text { pars }(N=1) \\
31 \text { pars } C N=2) \\
21 \text { LQCD "points" }\} 30 \text { imputs. } \\
9 \text { SCET velations }\} 30
\end{array}\right) .
\end{aligned}
$$

- no LCSR \rightarrow use (loose) SCET relations [DescotesGenon, M. Novoa-Brunet '19]

$f_{\perp^{\prime}}(0)=0 \pm 0.2$,	$g_{\perp^{\prime}}(0)=0 \pm 0.2$,	${ }_{\perp^{\prime}}(0)=0 \pm 0.2$
$\tilde{h}_{\perp^{\prime}}(0)=0 \pm 0.2$,	$f_{+}(0) / f_{\perp}(0)=1 \pm 0.2$,	$f_{\perp}(0) / g_{0}(0)=1 \pm 0.2$,
$g_{\perp}(0) / g_{+}(0)=1 \pm 0.2$,	$h_{+}(0) / h_{\perp}(0)=1 \pm 0.2$,	$f_{+}(0) / h_{+}(0)=1 \pm 0.2$,

$$
\mathrm{O}\left(\alpha_{\mathrm{s}} / \pi, \Lambda_{\mathrm{aco}} / \mathrm{m}_{\mathrm{b}}\right)
$$

- Use an under-constrained fit ($\mathrm{N}>1$) and allows for saturation of the dispersive bound
\rightarrow The uncertainties are model-independent, increasing the expansion order does not change their size

[Ahmis, MR, Bordone '22]

Phenomenology

- Uncertainties are large but under control and systematically improvable
- LHCb analysis confirmed the usual b \rightarrow sel tension at low q^{2}

II. Improved dispersive bounds

Correlator and Helicities

- Main idea: Compute the inclusive $e^{+} e^{-} \rightarrow \bar{b} s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

+ other diagrams: loops, quark and gluon condensates...
- In practice, the correlator $\Pi_{\Gamma}^{\mu \nu}(q) \equiv i \int d^{4} x e^{i q \cdot x}\langle 0| \mathcal{T}\left\{J_{\Gamma}^{\mu}(x) J_{\Gamma}^{\dagger, \nu}(0)\right\}|0\rangle$ can be decomposed on an helicity basis:

$$
\Pi_{\Gamma}^{\mu \nu}(q) \equiv \sum_{\lambda, \lambda^{\prime}} \epsilon^{\mu}(\lambda) \epsilon^{\nu *}\left(\lambda^{\prime}\right) \Pi_{\Gamma}^{\left(\lambda, \lambda^{\prime}\right)}\left(q^{2}\right)
$$

Correlator and Helicities

- Mompared to the nsual:
$\begin{array}{l}\text { Inser } \\ \text { vecto } \\ \text { curre }\end{array} \Pi_{r}^{\mu \nu}=\underbrace{(\underbrace{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}}_{\sum_{\lambda=0,2,11} \epsilon^{\mu}(\lambda) \epsilon^{\nu *}(\lambda)}) \Pi_{r}^{(J=1)}+\underbrace{\frac{q^{\mu} q^{\nu}}{q^{2}} \Pi_{r}^{(J=0)}} \epsilon^{\mu}(t) \epsilon^{\nu x}(t)$ Re
- In practice, the correlator $\Pi_{\Gamma}^{\mu \nu}(q) \equiv i \int d^{4} x e^{i q \cdot x}\langle 0| \mathcal{T}\left\{J_{\Gamma}^{\mu}(x) J_{\Gamma}^{\dagger, \nu}(0)\right\}|0\rangle$
can be decomposed on an helicity basis:

$$
\Pi_{\Gamma}^{\mu \nu}(q) \equiv \sum_{\lambda, \lambda^{\prime}} \epsilon^{\mu}(\lambda) \epsilon^{\nu *}\left(\lambda^{\prime}\right) \Pi_{\Gamma}^{\left(\lambda, \lambda^{\prime}\right)}\left(q^{2}\right)
$$

Correlator and Helicities

- Main advantage:
- The OPE calculation is independent of the helicities:

$$
\left.\Pi_{\Gamma}^{(J=1)}\right|_{\mathrm{OPE}}=\left.\Pi_{\Gamma}^{(0)}\right|_{\mathrm{OPE}}=\left.\Pi_{\Gamma}^{(\|)}\right|_{\mathrm{OPE}}=\left.\Pi_{\Gamma}^{(\perp)}\right|_{\mathrm{OPE}}
$$

\rightarrow The calculation of Ref. [Bharucha, Feldmann, Wick '10] still applies!

- Remove spurious correlations between form factors:
- e.g. A_{1} and A_{12} now fulfill different bounds
- decorrelate completely $B \rightarrow K$ from $\left(B \rightarrow K^{*}, B_{s} \rightarrow \phi\right)$

Correlator and Helicities

- In equations:
- This is the bound used in the literature:
$\left.\chi_{A}^{(J=1)}\right|_{B K^{*}}=\frac{\eta^{B \rightarrow K^{*}}}{24 \pi^{2}} \int_{\left(M_{B}+M_{K^{*}}\right)^{2}}^{\infty} d s \frac{\lambda_{\text {kin }}^{1 / 2}}{s^{2}\left(s-Q^{2}\right)^{3}}\left[s\left(M_{B}+M_{K^{*}}\right)^{2} A_{1}^{\left.B \rightarrow K^{*}\right|^{2}}+32 M_{B}^{2} M_{K *}^{2}{\left|A_{12}^{B \rightarrow K^{*}}\right|^{2}}^{2}\right.$
- And this is what we propose:

$$
\begin{aligned}
& \left.\chi_{A}^{(0)}\right|_{\bar{B} K^{*}}=\frac{\eta^{B \rightarrow K^{*}}}{\pi^{2}} \int_{\left(M_{B}+M_{K^{*}}\right)^{2}}^{\infty} d s \frac{\lambda_{\mathrm{kin}}^{1 / 2}}{s^{2}\left(s-Q^{2}\right)^{3}} 4 M_{B}^{2} M_{K^{*}}^{2} A_{12}^{\left.B \rightarrow K^{*}\right|^{2}}, \\
& \left.\chi_{A}^{(\| \|)}\right|_{\bar{B} K^{*}}=\frac{\eta^{B \rightarrow K^{*}}}{8 \pi^{2}} \int_{\left(M_{B}+M_{K^{*}}\right)^{2}}^{\infty} d s \frac{\lambda_{\mathrm{kin}}^{1 / 2}}{s^{2}\left(s-Q^{2}\right)^{3}} s\left(M_{B}+M_{\left.K^{*}\right)^{2}\left|A_{1}^{B \rightarrow K^{*}}\right|^{2},}\right.
\end{aligned}
$$

Local form factors fit

- With this framework we perform a combined fit of $B \rightarrow K, B \rightarrow K^{*}$ and $B_{s} \rightarrow \phi$ LCSR and lattice QCD inputs:
- B \rightarrow K:
- [HPQCD '13 and '22; FNAL/MILC '17]
- ([Khodjamiriam, Rusov '17]) \rightarrow large uncertainties, not used in the fit
- B $\rightarrow K^{*}$:
- [Horgan, Liu, Meinel, Wingate '15]
- [Gubernari, Kokulu, van Dyk '18]
$-\mathrm{B}_{\mathrm{s}} \rightarrow \varphi$:
- [Horgan, Liu, Meinel, Wingate '15]
- [Gubernari, van Dyk, Virto '20]
- Baryonic decays should be added, but there are currently only few constraints

Results

- Bayesian analysis using EOS
- Truncate the series expansion to $N=2,3,4$
- Uncertainties stable for $\mathrm{N}>2$
- Provide machine-readable numerical results
- Main conclusions:
- With the current inputs, BSZ still performs well (including uncertainties) for $q^{2}>0$
- Our approach is essential for $q^{2}<0$

EOS eos.github.io \leftrightarrow stability ariterion. [Gubernari, Reboud, van Dyk, JV 2305.XXXX]

III. Parametrization of non-local form factors

Parametrization of the charm loop

- Still focusing on $B \rightarrow K, B \rightarrow K^{*}$ and $B_{s} \rightarrow \varphi$ Inputs:
- 4 theory point at negative q^{2} from the light cone OPE
- Experimental results at the J / Ψ
- Use again an under-constrained fit $(\mathrm{N}=5)$ and allows for saturation of the dispersive bound
\rightarrow The uncertainties are model-independent, increasing the expansion order does not change their size
\rightarrow All p-values are larger than 11\%

$$
\frac{\text { trunc. onder }}{\text { in dep. }}
$$

[Gubernari, MR, van Dyk, Virto '22]

Parametrization of the charm loop

- Still focusing on $B \rightarrow K, B \rightarrow K^{*}$ and $B_{s} \rightarrow \varphi$ Inputs:
- 4 theory point at negative q^{2} from the light cone OPE
- Experimental results at the J / Ψ
- Use again an under-constrained fit $(\mathrm{N}=5)$ and allows for saturation of the dispersive bound
\rightarrow The uncertainties are model-independent, increasing the expansion order does not change their size
\rightarrow All p-values are larger than 11\%

$$
\frac{\text { trunc. order }}{\text { in dep. }}
$$

[Gubernari, MR, van Dyk, Virto '22]

[W. Altmannshofer]

SM predictions

- Good overall agreement with previous theoretical approaches [Beneke, Feldman, Seidel '01 \& '04]
- Small deviation in the slope of $B_{s} \rightarrow \phi \mu \mu$
- Larger but controlled uncertainties especially near the J/ ψ
\rightarrow The approach is systematically improvable (new channels, $\psi(2 S)$ data...)

Confrontation with data

- Conservatively accounting for the non-local form factors does not solve the $b \rightarrow s \mu \mu$ anomalies
- The largest source of theoretical uncertainty still comes from local form factors

Experimental results:
[Babar: 1204.3933; Belle: 1908.01848, 1904.02440; ATLAS: 1805.04000, CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241, 2003.04831, 1606.04731, 2107.13428]

IV. BSM analysis: proof of concept

BSM 'proof-of-concept' analysis

- A combined BSM analysis would be very CPU expensive (130 correlated.) nonGaussian, nuisance parameters!)
- Fit C_{9} and C_{10} separately for the three channels:
$-\mathrm{B} \rightarrow \mathrm{K} \mu^{+} \mu^{-}+\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\left(^{*}\right)$
- $B \rightarrow K^{*} \mu^{+} \mu^{-}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu^{+} \mu^{-}$
${ }^{(*)}$ Need to be updated with CMS' $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$ measurement [2212.10311] and HPQCD ' $22 \mathrm{~B} \rightarrow \mathrm{~K}$
 form factors

Conclusion

Discussing BSM models requires a solid understanding of the hadronic physics:

- Local form factors uncertainties can be controlled and reduced by using improved dispersive bound and a appropriate parametrization
- Non-local form factors can also be constrained by theory calculation and experimental measurements
\rightarrow In both cases:
- Uncertainties are still large, but controlled by dispersive bounds
- Our approach is systematically improvable

Back-up

$\mathrm{B} \rightarrow \mathrm{K}^{*} \mathrm{P}_{\mathrm{s}}$

Model comparisons

Non-local form factors: QCDF

What is QCD Factorization doing for us?
Beneke, Feldmann, Seidel 2001
Beneke, Buchalla, Neubert, Sachrajda 2009
$B \rightarrow \pi \pi$
π

$$
\left|S_{d q^{2}} \pi\left(q^{2}\right)\right|^{2}
$$

$B \rightarrow k_{p r}$

This imagivany pant is like the one in $B \rightarrow \pi \pi$.
(See also: Beylich, Buchulla, Ferdmann.)

Matching calculation at NLO

Checking analytic structure of $\mathcal{H}\left(q^{2}\right)$
1.5
[Analytic structure in q^{2} checked explicitly numerically though a disp. velation]

