A new puzzle in nonleptonic B decays

Gilberto Tetlalmatzi-Xolocotzi

Based on:

A. Biswas, S. Descotes-Genon, J. Matias and GTX, 2301.10542 [hep-ph]

CPPS, Theoretische Physik 1, Universität Siegen,

Université Paris-Saclay, CNRS/IN2P3, IJCLab,

Laboratoire de Physique des 2 Infinis

Relevant decay processes

 $\bar{B}_{d,s} \to K^0 \bar{K}^0 \qquad \bar{B}_{d,s} \to K^{*0} \bar{K}^{*0}$

Penguin mediated decays

$$\bar{A}_f = \lambda_u^{(q)} T_q + \lambda_c^{(q)} P_q = \lambda_u^{(q)} \Delta_q - \lambda_t^{(q)} P_q \qquad \Delta_q = T_q - P_q$$
$$q = d, s \qquad \lambda_u^{(q)} + \lambda_c^{(q)} + \lambda_t^{(q)} = 0$$

The amplitudes are calculated using QCD Factorization (QCDF)

M. Beneke, M. Neubert [0308039]

$$\begin{split} T(\bar{B}_d \to \bar{K}^{\ 0}K^{\ 0}) &= A_{\bar{K}\ K} \left[\alpha_4^u - \frac{1}{2} \alpha_{4,EW}^u + \beta_3^u + \beta_4^u - \frac{1}{2} \beta_{3,EW}^u - \frac{1}{2} \beta_{4,EW}^u \right] \\ &+ A_{K\ \bar{K}} \left[\beta_4^u - \frac{1}{2} \beta_{4,EW}^u \right], \\ P(\bar{B}_d \to \bar{K}^{\ 0}K^{\ 0}) &= A_{\bar{K}\ K} \left[\alpha_4^c - \frac{1}{2} \alpha_{4,EW}^c + \beta_3^c + \beta_4^c - \frac{1}{2} \beta_{3,EW}^c - \frac{1}{2} \beta_{4,EW}^c \right] \\ &+ A_{K\ \bar{K}} \left[\beta_4^c - \frac{1}{2} \beta_{4,EW}^c \right], \end{split}$$

The infrared divergences appearing in T and P have the same structure

 $\Delta_q = T_q - P_q$ is free from infrared divergences

S. Descotes, J. Matias, J. Virto [0603239]

$$a_{i}^{p}(M_{1}M_{2}) = \left(C_{i} + \frac{C_{i\pm 1}}{N_{c}}\right)N_{i}(M_{2}) + \frac{C_{i\pm 1}}{N_{c}}\frac{C_{F}\alpha_{s}}{4\pi}\left[V_{i}(M_{2}) + \frac{4\pi^{2}}{N_{c}}H_{i}(M_{1}M_{2})\right] + P_{i}^{p}(M_{2})$$

Vertex contributions

$$a_{i}^{p}(M_{1}M_{2}) = \left(C_{i} + \frac{C_{i\pm 1}}{N_{c}}\right)N_{i}(M_{2}) + \frac{C_{i\pm 1}}{N_{c}}\frac{C_{F}\alpha_{s}}{4\pi}\left[V_{i}(M_{2}) + \frac{4\pi^{2}}{N_{c}}H_{i}(M_{1}M_{2})\right] + P_{i}^{p}(M_{2})$$

Vertex contributions

$$a_{i}^{p}(M_{1}M_{2}) = \left(C_{i} + \frac{C_{i\pm 1}}{N_{c}}\right)N_{i}(M_{2}) + \frac{C_{i\pm 1}}{N_{c}}\frac{C_{F}\alpha_{s}}{4\pi}\left[V_{i}(M_{2}) + \frac{4\pi^{2}}{N_{c}}H_{i}(M_{1}M_{2})\right] + P_{i}^{p}(M_{2})$$

Hard Spectator Scattering

$$a_{i}^{p}(M_{1}M_{2}) = \left(C_{i} + \frac{C_{i\pm 1}}{N_{c}}\right)N_{i}(M_{2}) + \frac{C_{i\pm 1}}{N_{c}}\frac{C_{F}\alpha_{s}}{4\pi}\left[V_{i}(M_{2}) + \frac{4\pi^{2}}{N_{c}}H_{i}(M_{1}M_{2})\right] + P_{i}^{p}(M_{2})$$

Penguin contributions

Annihilation amplitudes β_i

Optimized Observables

Consider the decays $\bar{B}_{d,s} \to K^{*0} \bar{K}^{*0}$ since the final states are vector states only the longitudinal amplitude is free from infrared divergences at LO.

Construct an optimized observable from the longitudinal amplitude.

Use a ratio involving as initial state B_s (numerator) vs B_d (denominator) to benefit from SU(2)

$$L_{K^*\bar{K}^*} = \rho(m_{K^{*0}}, m_{K^{*0}}) \frac{\mathcal{B}(\bar{B}_s \to K^{*0}\bar{K}^{*0})}{\mathcal{B}(\bar{B}_d \to K^{*0}\bar{K}^{*0})} \frac{f_L^{B_s}}{f_L^{B_d}} = \frac{|A_0^s|^2 + |\bar{A}_0^s|^2}{|A_0^d|^2 + |\bar{A}_0^d|^2}$$

S. Descotes, J. Matias, et al [2011.07867]

$$f_L^{B_s}, f_L^{B_d}$$

 $\rho(m_{K^{*0}}, m_{K^{*0}})$

Longitudinal polarization fractions

Phase space function

Optimized Observables

$$L_{K^*\bar{K}^*} = \frac{|A_0^s|^2 + |\bar{A}_0^s|^2}{|A_0^d|^2 + |\bar{A}_0^d|^2} = \kappa \left|\frac{P_s}{P_d}\right|^2 \left[\frac{1 + |\alpha^s|^2 \left|\frac{\Delta_s}{P_s}\right|^2 + 2\operatorname{Re}\left(\frac{\Delta_s}{P_s}\right)\operatorname{Re}(\alpha^s)}{1 + |\alpha^d|^2 \left|\frac{\Delta_d}{P_d}\right|^2 + 2\operatorname{Re}\left(\frac{\Delta_d}{P_d}\right)\operatorname{Re}(\alpha^d)}\right]$$

$$\kappa = \left| \frac{\lambda_u^s + \lambda_c^s}{\lambda_u^s + \lambda_c^s} \right|^2 = 22.91^{+0.48}_{-0.47},$$

$$\alpha^d = \frac{\lambda_u^d}{\lambda_u^d + \lambda_c^d} = -0.0135^{+0.0123}_{-0.0124} + 0.4176^{+0.0123}_{-0.0124}i,$$

$$\alpha^s = \frac{\lambda_u^s}{\lambda_u^s + \lambda_c^s} = 0.0086^{+0.0004}_{-0.0004} - 0.0182^{+0.0006}_{-0.0006}i.$$

S. Descotes, J. Matias, et al [2011.07867]

Theoretical and Experimental values

The following result is reported by LHCb at $3 fb^{-1}$

 $\frac{\mathcal{B}_{B_d \to K^{*0} \bar{K}^{*0}}}{\mathcal{B}_{B_s \to K^{*0} \bar{K}^{*0}}} = 0.0758 \pm 0.0057 \text{(stat)} \pm 0.0025 \text{(syst)} \pm 0.0016 \left(\frac{f_s}{f_d}\right)$

LHCb [1905.06662, 0708.2248]

The polarization fractions have been measured to be

 $f_L(B_d \to K^{0*}K^{0*}) = 0.73 \pm 0.05$ $f_L(\bar{B}_s \to K^{0*}\bar{K}^{0*}) = 0.240 \pm 0.040$

LHCb [1905.06662], BABAR [0708.2248] S. Descotes, J. Matias, et al [2011.07867]

LHCb [1503.05362]

Final Experimental result

$$L_{K^*\bar{K}^*}^{\exp} = 4.43 \pm 0.92$$

Theoretical and Experimental values $L_{K^*\bar{K}^*}^{\exp} = 4.43 \pm 0.92$ **Final Experimental result** $L_{K^*\bar{K}^*} = 23^{+16}_{-12}$ 1.9σ SU(3) Theory Naive factorization $L_{K^*\bar{K}^*} = 19.2^{+9.3}_{-6.5}$ 3.0σ $L_{K^*\bar{K}^*}^{\rm SM} = 19.53^{+9.14}_{-6.64}$ 2.6σ **QCD** factorization Montecarlo distribution obtained from varying the nuisance parameters 10 20 30 40 50 $L_{K^*\bar{K^*}}$

2.6 σ discrepancy between theory and experiment

Effective theory description

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{p=c,u} \lambda_p^{(q)} \Big(\mathcal{C}_{1s}^p Q_{1s}^p + \mathcal{C}_{2s}^p Q_{2s}^p + \sum_{i=3...10} \mathcal{C}_{is} Q_{is} + \mathcal{C}_{7\gamma s} Q_{7\gamma s} + \mathcal{C}_{8gs} Q_{8gs} \Big)$$

$$Q_{1s}^{p} = (\bar{p}b)_{V-A}(\bar{s}p)_{V-A},$$

$$Q_{2s}^{p} = (\bar{p}_{i}b_{j})_{V-A}(\bar{s}_{j}p_{i})_{V-A},$$

$$Q_{3s} = (\bar{s}b)_{V-A}\sum_{q}(\bar{q}q)_{V-A},$$

$$Q_{4s} = (\bar{s}_{i}b_{j})_{V-A}\sum_{q}(\bar{q}_{j}q_{i})_{V-A},$$

$$Q_{5s} = (\bar{s}b)_{V-A}\sum_{q}(\bar{q}q)_{V+A},$$

$$Q_{6s} = (\bar{s}_{i}b_{j})_{V-A}\sum_{q}(\bar{q}_{j}q_{i})_{V+A},$$

$$Q_{7s} = (\bar{s}b)_{V-A} \sum_{q} \frac{3}{2} e_q(\bar{q}q)_{V+A},$$

$$Q_{8s} = (\bar{s}_i b_j)_{V-A} \sum_{q} \frac{3}{2} e_q(\bar{q}_j q_i)_{V+A},$$

$$Q_{9s} = (\bar{s}b)_{V-A} \sum_{q} \frac{3}{2} e_q(\bar{q}q)_{V-A},$$

$$Q_{10s} = (\bar{s}_i b_j)_{V-A} \sum_{q} \frac{3}{2} e_q(\bar{q}_j q_i)_{V-A},$$

$$Q_{7\gamma s} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} b,$$

$$Q_{8gs} = \frac{-g_s}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} b,$$

Potential NP in $b \rightarrow s q \overline{q}$ and $b \rightarrow s(g \gamma)$ transitions?.

Test NP contributions in different Wilson coefficients, the best solutions

are given in terms of
$$C_{4
m s}^{NP}$$
, $C_{6
m s}^{NP}$ and $C_{8
m gs}^{NP}$

$$\begin{split} L_{K^*\bar{K}^*} &= 19.25 - 936.23 \ \mathcal{C}_{4s}^{\rm NP} + 14383.60 \ (\mathcal{C}_{4s}^{\rm NP})^2 + 55.44 \ \mathcal{C}_{6s}^{\rm NP} + 73.70 \ (\mathcal{C}_{6s}^{\rm NP})^2 \\ &+ 50.53 \ \mathcal{C}_{8gs}^{\rm NP} + 39.38 \ (\mathcal{C}_{8gs}^{\rm NP})^2 - 711.45 \ \mathcal{C}_{4s}^{\rm NP} \ \mathcal{C}_{6s}^{\rm NP} - 1502.07 \ \mathcal{C}_{4s}^{\rm NP} \ \mathcal{C}_{8gs}^{\rm NP} \\ &+ 43.76 \ \mathcal{C}_{6s}^{\rm NP} \ \mathcal{C}_{8gs}^{\rm NP} \\ &+ 31.92 \ \mathcal{C}_{8gs}^{\rm NP} + 10.38 \ (\mathcal{C}_{8gs}^{\rm NP})^2 + 5318.62 \ \mathcal{C}_{4s}^{\rm NP} \ \mathcal{C}_{6s}^{\rm NP} - 257.90 \ \mathcal{C}_{4s}^{\rm NP} \ \mathcal{C}_{8gs}^{\rm NP} \\ &- 421.08 \ \mathcal{C}_{6s}^{\rm NP} \ \mathcal{C}_{8gs}^{\rm NP} \end{split}$$

Solutions for $C_{4\rm s}^{\it NP}$ and $C_{\rm 8gs}^{\it NP}$ independently exist

Solutions for C_{4s}^{NP} and C_{6s}^{NP} combined Notice that C_{6s}^{NP} requires $C_{4s}^{NP} \neq 0$

Individual Branching Fractions

 $B \rightarrow V V$

Longitudinal $\mathcal{B}(\bar{B}_d$		
SM (QCDF)	Experiment	1.8σ
$2.27^{+0.98}_{-0.74}$	$6.04^{+1.81}_{-1.78}$	
Longitudinal $\mathcal{B}(\bar{B}_s)$		
SM (QCDF)	Experiment	09σ
$4.36^{+2.23}_{-1.65}$	$2.62^{+0.85}_{-0.75}$	0.70

 $B \rightarrow P P$

	$\mathcal{B}(\bar{B}_d \to K^0 \bar{K}^0) \ [10^{-6}]$		
	SM (QCDF)	Experiment	0.4 σ
	$1.09^{+0.29}_{-0.20}$	1.21 ± 0.16	
$\mathcal{B}(\bar{B}_s \to K^0 \bar{K}^0) \ [10^{-5}]$			
	SM (QCDF)	Experiment] 1.6σ
	$2.80^{+0.89}_{-0.62}$	1.76 ± 0.33]

Individual Branching Fractions

 $B \rightarrow V V$

 $B \rightarrow P P$

NP Explanations for all the observables

Magenta: NP region with $C_{6d,6s}^{NP} = 0$

Magenta: NP explanation of all the observables

Dotted black region: $C_{6d,6s}^{NP}$ are allowed to float freely

We propose extra observables that can help to identify potential NP effects constructed out of the transitions $B \rightarrow PV$ and $B \rightarrow VP$

$$\hat{L}_{K^*} = \rho(m_{K^0}, m_{K^{*0}}) \frac{\mathcal{B}(\bar{B}_s \to K^{*0}\bar{K}^0)}{\mathcal{B}(\bar{B}_d \to \bar{K}^{*0}K^0)} = \frac{|A^s|^2 + |\bar{A}^s|^2}{|A^d|^2 + |\bar{A}^d|^2} \qquad \hat{L}_{K^*}^{SM} = 21.30^{+7.19}_{-6.30}$$

$$\kappa = \rho(m_{K^0}, m_{K^{*0}}) \frac{\mathcal{B}(\bar{B}_s \to K^0\bar{K}^{*0})}{\mathcal{B}(\bar{B}_d \to \bar{K}^0K^{*0})} = \frac{|A^s|^2 + |\bar{A}^s|^2}{|A^d|^2 + |\bar{A}^d|^2} \qquad \hat{L}_K^{SM} = 25.01^{+4.21}_{-4.07}$$

Î.

$$\begin{split} \hat{L}_{K^*} &= 21.00 + 1040.25 \ \mathcal{C}_{4s}^{\rm NP} + 12886.60 \ (\mathcal{C}_{4s}^{\rm NP})^2 - 1504.72 \ \mathcal{C}_{6s}^{\rm NP} + 27037.90 \ (\mathcal{C}_{6s}^{\rm NP})^2 \\ &- 26.72 \ \mathcal{C}_{8gs}^{\rm NP} + 8.52 \ (\mathcal{C}_{8gs}^{\rm NP})^2 \ - 37304.70 \ \mathcal{C}_{4s}^{\rm NP} \ \mathcal{C}_{6s}^{\rm NP} - 662.39 \ \mathcal{C}_{4s}^{\rm NP} \ \mathcal{C}_{8gs}^{\rm NP} \\ &+ 959.60 \ \mathcal{C}_{6s}^{\rm NP} \ \mathcal{C}_{8gs}^{\rm NP} , \end{split}$$

$$\begin{aligned} \hat{L}_{K} &= 25.04 - 1201.22 \ \mathcal{C}_{4s}^{\text{NP}} + 15994.20 \ (\mathcal{C}_{4s}^{\text{NP}})^{2} + 149.47 \ \mathcal{C}_{6s}^{\text{NP}} + 240.53 \ (\mathcal{C}_{6s}^{\text{NP}})^{2} \\ &+ 66.04 \ \mathcal{C}_{8gs}^{\text{NP}} + 46.59 \ (\mathcal{C}_{8gs}^{\text{NP}})^{2} - 3252.68 \ \mathcal{C}_{4s}^{\text{NP}} \ \mathcal{C}_{6s}^{\text{NP}} - 1723.21 \ \mathcal{C}_{4s}^{\text{NP}} \ \mathcal{C}_{8gs}^{\text{NP}} \\ &+ 182.57 \ \mathcal{C}_{6s}^{\text{NP}} \ \mathcal{C}_{8gs}^{\text{NP}}. \end{aligned}$$

Predictions from Possible New Physics scenarios

In this scenario \hat{L}_{K^*} is enhanced by a factor of 3 - 5.

Since B meson tagging is particularly challenging we define the alternative observables

$$\begin{split} L_{K^*} &= 2\,\rho(m_{K^0}, m_{K^{*0}}) \frac{\mathcal{B}(\bar{B}_s \to K^{*0}\bar{K}^0)}{\mathcal{B}(\bar{B}_d \to \bar{K}^{*0}K^0) + \mathcal{B}(\bar{B}_d \to \bar{K}^0K^{*0})} = \frac{2R_d}{1+R_d}\hat{L}_{K^*} \\ L_K &= 2\,\rho(m_{K^0}, m_{K^{*0}}) \frac{\mathcal{B}(\bar{B}_s \to K^0\bar{K}^{*0})}{\mathcal{B}(\bar{B}_d \to \bar{K}^{*0}K^0) + \mathcal{B}(\bar{B}_d \to \bar{K}^0K^{*0})} = \frac{2}{1+R_d}\hat{L}_K \\ L_{\text{total}} &= \rho(m_{K^0}, m_{K^{*0}}) \left(\frac{\mathcal{B}(\bar{B}_s \to K^{*0}\bar{K}^0) + \mathcal{B}(\bar{B}_s \to K^0\bar{K}^{*0})}{\mathcal{B}(\bar{B}_d \to \bar{K}^{*0}K^0) + \mathcal{B}(\bar{B}_d \to \bar{K}^0K^{*0})} \right) \\ &= \frac{L_{K^*} + L_K}{2} = \frac{\hat{L}_K + \hat{L}_{K^*}R^d}{1+R^d} \end{split}$$

$$R^d = \frac{\mathcal{B}(\bar{B}_d \to \bar{K}^{*0} K^0)}{\mathcal{B}(\bar{B}_d \to \bar{K}^0 K^{*0})}$$

 $L_K^{\rm SM} = 29.16^{+5.49}_{-5.25}$ $L_{K^*}^{\rm SM} = 17.44^{+6.59}_{-5.82}$ $L_{\rm total}^{\rm SM} = 23.48^{+3.95}_{-3.82}$ $R^{d\,\rm SM} = 0.70^{+0.30}_{-0.22}$

The sensitivity towards NP in this observables is reduced with respect to the ones where tagging was present

Deviation patterns

Conclusions

• There are interesting deviation patterns in the non-leptonic decays

 $\bar{B}_{d,s}
ightarrow K^0 ar{K}^0$ and $\bar{B}_{d,s}
ightarrow K^{*0} ar{K}^{*0}$.

- There is a tension between theory and experiment in the optimized observables $L_{K^*\overline{K^*}}$ and $L_{K\overline{K}}$ at the level of 2.6 σ and 2.4 σ respectively.
 - The deviations can also be found in the individual branching fractions.
- The tension between theory and experiment can be explained if New Physics is assumed in combinations of the Wilson coefficients

$$C_{4\mathrm{s}}^{NP}$$
, $C_{6\mathrm{s}}^{NP}$, $C_{8\mathrm{gs}}^{NP}$ $C_{4\mathrm{d}}^{NP}$, $C_{6\mathrm{d}}^{NP}$, $C_{8\mathrm{gd}}^{NP}$

• Further observables based on the decays $B \rightarrow K^0 \overline{K^{*0}}$ can be constructed to test and falsify different New Physics scenarios.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945422

