UPDATE ONHES RCL PUZTME Paolo Gambino

Beyond Flavour Anomalies IV, Barcelona, 2 I.4.2023

The importance of $\left|V_{c b}\right|$

Another CKM unitarity test is the Unitarity Triangle (UT) formed by

$$
1+\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}+\frac{V_{t d} V_{t b}^{*}}{V_{c d} V_{c b}^{*}}=0
$$

$\mathrm{V}_{\text {cb }}$ plays an important role in UT

$$
\begin{aligned}
& \varepsilon_{K} \approx x\left|V_{c b}\right|^{4}+\ldots \\
& \text { he prediction of FCNC: } \\
& \left.V_{t s}\right|^{2} \simeq\left|V_{c b}\right|^{2}\left[1+O\left(\lambda^{2}\right)\right]
\end{aligned}
$$

where it often dominates the theoretical uncertainty.
$\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}$ constrains directly the UT

Our ability to determine precisely $V_{c b}$ is crucial for indirect NP searches

Since several years the inclusive and exclusive determinations of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ diverge

Recently: new calculations of FFs by several lattice collaborations and with lightcone sum rules, new perturbative calculations, all facing the challenges of a precision measurements... and several new measurements as well!

Indirect determinations

of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from loop induced $\Delta F=2$ processes
assuming the SM. They tend to prefer a high $\left|\mathrm{V}_{\mathrm{cb}}\right|$ but sensitive to lattice calculations for mixing

see also

W.Altmannshofer's talk 2||2.03437

NEW PHYSICS?

Jung \& Straub, 1801.01112

Differential distributions constrain NP strongly, SMEFT interpretation incompatible with LEP data: Crivellin, Pokorski, Jung, Straub...

VIOLATION OF LFU with TAUS

see Jung \& Harrison talk

INCLUSIVE SEMILEPTONIC B DECAYS

Inclusive observables are double series in $\Lambda / \mathrm{mb}_{\mathrm{b}}$ and a_{s}

$$
\begin{aligned}
M_{i}= & M_{i}^{(0)}+\frac{\alpha_{s}}{\pi} M_{i}^{(1)}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} M_{i}^{(2)}+\left(M_{i}^{(\pi, 0)}+\frac{\alpha_{s}}{\pi} M_{i}^{(\pi, 1)}\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}} \\
& +\left(M_{i}^{(G, 0)}+\frac{\alpha_{s}}{\pi} M_{i}^{(G, 1)}\right) \frac{\mu_{G}^{2}}{m_{b}^{2}}+M_{i}^{(D, 0)} \frac{\rho_{D}^{3}}{m_{b}^{3}}+M_{i}^{(L S, 0)} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots
\end{aligned}
$$

Global shape parameters (first moments of the distributions, with various lower cuts on $E_{\text {I }}$) tell us about m_{b}, m_{c} and the B structure, total rate about $\left|V_{c b}\right|$

OPE parameters describe universal properties of the B meson and of the quarks: they are useful in many applications (rare decays, $, \mathrm{Vub}_{\mathrm{u}}, \ldots$..)

Reliability of the method depends on our control of higher order effects. Quarkhadron duality violation would manifest itself as inconsistency in the fit.

Kinetic scheme fit includes all corrections $O\left(\alpha_{s}^{2}, \alpha_{s} / m_{b}^{2}, 1 / m_{b}^{3}\right), \mathrm{m}_{c}$ constraint from sum rules/lattice, and recent $O\left(\alpha_{s}^{3}\right)$ contribution to width.

3LOOP CALCULATIONS

Fael, Schoenwald, Steinhauser, 20 I I . I I 655, 20 I I . I 3654

3loop and 2loop charm mass effects in relation between kinetic and $\overline{\mathrm{MS}} b$ mass $m_{b}^{k i n}(1 \mathrm{GeV})=\left[4163+259_{\alpha_{s}}+78_{\alpha_{s}^{2}}+26_{\alpha_{s}^{3}}\right] \mathrm{MeV}=(4526 \pm 15) \mathrm{MeV}$ Using FLAG $\bar{m}_{b}\left(\bar{m}_{b}\right)=4.198(12) \mathrm{GeV}$ one gets $m_{b}^{k i n}(1 \mathrm{GeV})=4.565(19) \mathrm{GeV}$

3loop correction to total semileptonic width

$$
\Gamma_{s l}=\Gamma_{0} f(\rho)\left[0.9255-0.1162_{\alpha_{s}}-0.0350_{\alpha_{s}^{2}}-0.0097_{\alpha_{3}^{3}}\right]
$$

in the kin scheme with $\mu=1 \mathrm{GeV}$ and $\bar{m}_{c}(3 \mathrm{GeV})=0.987 \mathrm{GeV}, \mu_{\alpha_{s}}=m_{b}^{\text {kin }}$

$$
\Gamma_{s l}=\Gamma_{0} f(\rho)\left[0.9255-0.1140_{\alpha_{s}}-0.0011_{\alpha_{s}^{2}}+0.0103_{\alpha_{3}^{3}}\right]
$$

in the kin scheme with $\mu=1 \mathrm{GeV}$ and $\bar{m}_{c}(2 \mathrm{GeV})=1.091 \mathrm{GeV}, \mu_{\alpha_{s}}=m_{b}^{k i n} / 2$

(f) 3loop correction tends to lower $\Gamma_{s l}$ and therefore pushes $\left|V_{c b}\right|$ slightly up ($\sim 0.5 \%$)

RESIDUAL UNCERTAINTY on $\Gamma_{s l}$

Bordone, Capdevila, PG, 2107.00604

Similar reduction in $\mu_{\text {kin }}$ dependence. Purely perturbative uncertainty $\pm 0.7 \%$ (max spread), central values at $\mu_{c}=2 \mathrm{GeV}, \mu_{\alpha_{s}}=m_{b} / 2$.
$O\left(\alpha_{s} / m_{b}^{2}, \alpha_{s} / m_{b}^{3}\right)$ effects in the width are known. Additional uncertainty from higher power corrections, soft charm effects of $O\left(\alpha_{s} / m_{b}^{3} m_{c}\right)$, duality violation.

Conservatively: I. 2% overall theory uncertainty in $\Gamma_{s l}$ ($a \sim 50 \%$ reduction) Interplay with fit to semileptonic moments, known only to $O\left(\alpha_{s}^{2}, \alpha_{s} \Lambda^{2} / m_{b}^{2}\right)$

INCLUSIVE SEMILEPTONIC FITS

$m_{b}^{k i n}$	$\bar{m}_{c}(2 \mathrm{GeV})$	μ_{π}^{2}	ρ_{D}^{3}	$\mu_{G}^{2}\left(m_{b}\right)$	$\rho_{L S}^{3}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$
4.573	1.092	0.477	0.185	0.306	-0.130	10.66	42.16
0.012	0.008	0.056	0.031	0.050	0.092	0.15	0.51

Higher power corrections see a proliferation of parameters. We use the Lowest Lying State Saturation Approximation (Mannel,Turczyk,Uraltsev I 009.4622) as loose constraint or priors (60% gaussian uncertainty, dimensional estimate for vanishing matrix elements) in a fit including higher powers.

$$
\left|V_{c b}\right|=42.00(53) \times 10^{-3}
$$

PROSPECTS for INCLUSIVE $V_{c b}$

- Theoretical uncertainties no longer dominate, we are now close to ।\% accuracy
- $O\left(\alpha_{s} \rho_{D}^{3} / m_{b}^{3}\right)$ calculation completed for width (Mannel, Pivovarov) in progress for the moments (S. Nandi, PG)
- Electroweak (QED) corrections require attention, a study is under way
- New observables: FB asymmetry (Turczyk) could be measured already by Babar and Belle now, new \boldsymbol{q}^{2} moments measurements by Belle (2109.01685) and Belle II (2205.06372) not yet included in our fit
- Reparametrisation invariance implies that q^{2} moments depend on a smaller set of HQE parameters (Fael, Mannel, Vos), 8 at $O\left(1 / m_{b}^{4}\right)$, but using only the q^{2} moments: $:\left|V_{c b}\right|=41.99(65) \mid 0^{-3}$ using the same BR inputs we employ (2205. 10274)
- Lattice QCD calculations: HQE determination of matrix elements (PG, Melis, Simula 1704.06105) or direct inclusive calculation

INCLUSIVE DECAYS ONTHE LATTICE

- Inclusive processes impractical to treat directly on the lattice.Vacuum current correlators computed in euclidean space-time are related to $e^{+} e^{-} \rightarrow$ hadrons or τ decay via analyticity. In our case the correlators have to be computed in the B meson, but analytic continuation more complicated: two cuts, decay occurs only on a portion of the physical cut.
- While the lattice calculation of the spectral density of hadronic correlators is an ill-posed problem, the spectral density is accessible after smearing, as provided by phase-space integration Hansen, Meyer, Robaina, Hansen, Lupo, Tantalo, Bailas, Hashimoto, Ishikawa

A NEW APPROACH

4point functions on the lattice are related to the hadronic tensor in euclidean

The necessary smearing is provided by phase space integration over the hadronic energy, which however is cut by a θ with a sharp hedge: sigmoid $1 /\left(1+e^{x / \sigma}\right)$ can be used to replace
kinematic $\theta(x)$ for $\sigma \rightarrow 0$. Larger number of polynomials needed for small σ

important:
$\lim \lim \bar{X}_{\sigma}$
$\sigma \rightarrow 0 V \rightarrow \infty$

LATTICE vS OPE

$m_{b}^{k i n}(\mathrm{JLQCD})$	2.70 ± 0.04
$\bar{m}_{c}(2 \mathrm{GeV})(\mathrm{JLQCD})$	1.10 ± 0.02
$m_{b}^{k i n}(\mathrm{ETMC})$	2.39 ± 0.08
$\bar{m}_{c}(2 \mathrm{GeV})(\mathrm{ETMC})$	1.19 ± 0.04
μ_{π}^{2}	0.57 ± 0.15
ρ_{D}^{3}	0.22 ± 0.06
$\mu_{G}^{2}\left(m_{b}\right)$	0.37 ± 0.10
$\rho_{L S}^{3}$	-0.13 ± 0.10
$\alpha_{s}^{(4)}(2 \mathrm{GeV})$	0.301 ± 0.006

OPE inputs from fits to exp data (physical $\mathrm{mb}), \mathrm{HQE}$ of meson masses on lattice

I704.06 I05, J.Phys.Conf.Ser. II 37 (2019) I, 012005

We include $O\left(1 / m_{b}^{3}\right)$ and $O\left(\alpha_{s}\right)$ terms Hard scale $\sqrt{m_{c}^{2}+\mathbf{q}^{2}} \sim 1-1.5 \mathrm{GeV}$ We do not expect OPE to work at high $|\mathbf{q}|$

Twisted boundary conditions allow for any value of \vec{q}^{2}
Smaller statistical uncertainties

MOMENTS

PG, Hashimoto, Maechler, Panero, Sanfilippo, Simula, Smecca,Tantalo, 2203.I I 762

$$
L_{1}=\left\langle E_{\ell}\left(\mathbf{q}^{2}\right)\right\rangle
$$

smaller errors, cleaner comparison with OPE, individual channels AA, VV, parallel and perpendicular polarization, could help extracting its parameters

First results at the physical b mass

Relativistic heavy quark effective action for b B_{s} decays
domain wall fermions
$\sim 10 \%$ determination of total width
possibly compare with partial width at low \mathbf{q}^{2}

Barone, Hashimoto, Juttner, Kaneko, Kellermann, Lattice 2022

EXCLUSIVE DECAYS

There are I(2) and 3(4) FFs for D and D* for light (heavy) leptons, for instance
$\langle D(k)| \bar{c} \gamma^{\mu} b|\bar{B}(p)\rangle=\left[(p+k)^{\mu}-\frac{M_{B}^{2}-M_{D}^{2}}{q^{2}} q^{\mu}\right] f_{+}^{B \rightarrow D}\left(q^{2}\right)+\frac{M_{B}^{2}-M_{D}^{2}}{q^{2}} q^{\mu} f_{0}^{B \rightarrow D}\left(q^{2}\right)$ Information on FFs from LQCD (at high q^{2}), LCSR (at low q^{2}), HQE, exp, extrapolation, unitarity constraints, ...

- A model independent parametrization is necessary

LATTICE + EXP BGL FIT for $B \rightarrow D \ell \nu$
 Bigi, PG I 606.08030

D'AGOSTINI BIAS

Standard χ^{2} fits sometimes lead to paradoxical results

Fig. 1. Best estimate of the true value from two correlated data points, using in the χ^{2} the empirical covariance matrix of the meaurements. The error bars show individual and total errors.

$$
\hat{k}=\frac{x_{1} \sigma_{2}^{2}+x_{2} \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}+\left(x_{1}-x_{2}\right)^{2} \sigma_{f}^{2}},
$$

Many exp systematics are highly correlated. Bias is stronger with more bins

On the use of the covariance matrix to fit correlated data
G. D'Agostini

Dipartimento di Fisica, Università "La Sapienza" and INFN, Roma, Italy
(Received 10 December 1993; revised form received 18 February 1994)

Fig. 2. R measurements from PETRA and PEP experiments with the best fits of QED + QCD to all the data (full line) and only below 36 GeV (dashed line). All data points are correlated (see text).

w DISTRIBUTION for $B \rightarrow D \ell \nu$

 Belle 2015 consider 4 channels $\left(B^{0,+}, e, \mu\right)$ for each bin. Average (red points) usually lower than all central values. Bias? Blue points are average of normalised bins.

Standard fit to Bellel 5+FNAL+HPQCD: $\left|V_{c b}\right|=40.9(1.2) 10^{-3}$ Fit to normalised bins Belle $15+$ FNAL+HPQCD: $\left|V_{c b}\right|=41.9(1.2) 10^{-3}$

$\left|V_{c b}\right|$ from $B \rightarrow D^{*} \mid v$

More complicated: 4 FFs, angular spectra, D^{*} unstable. Present status unclear.
I. Parametrisations matter and the related uncertainties require careful consideration. Belle 2017 dataset analysed with BGL or CLN leads to $6-8 \%$ difference in $\left|V_{c b}\right|$. Bigi. PG, Schacht, Grinstein, Kobach
Discard old exp results obtained with CLN and provide data in a parametrisation independent way.
2. Despite recent progress, lattice calculations are indecisive. Tension between Fermilab/MILC 202 I and HPQCD 2023 results at non-zero recoil and Belle untagged 2018 data, while JLQCD preliminary results give a consistent picture.
3. Problems in Belle 2018 analysis (D'Agostini bias, $\mu / e 4 \sigma$ tension in the $F B$ asymmetry) PG, Jung, schacht \& Bobeth, Bordone, van Dyk, Gubermari, Jung new Belle tagged analysis leads to higher $\left|V_{c b}\right|$, Babar 2019 to low |Vcb|, LHCb to high $\left|V_{c b}\right|$. New Belle II untagged analysis presented at Moriond. Data not yet available.

Nested Hypothesis Tests or Saturation Constraints

See also Jung's talk

Z. Ligeti, D. Robinson, M. Papucci, FB

 [arXiv:1902.09553, PRD100,013005 (2019)]Use a nested hypothesis test (NHT) to determine optimal truncation order

Challenge nested fits

$$
\begin{aligned}
& \mathrm{BGL}_{n_{a}, n_{b}, n_{c}+1, n_{b}, n_{c}} \\
& \longleftrightarrow \mathrm{BGL}_{n_{a} n_{b}+1, n_{c}} \\
& \mathrm{BGL}_{n_{a}, n_{b}, n_{c}+1}
\end{aligned}
$$

Test statistics \& Decision boundary

$$
\Delta \chi^{2}=\chi_{N}^{2}-\chi_{N+1}^{2} \quad \Delta \chi^{2}>1
$$

Distributed like a χ^{2}-distribution with 1 dof (Wilk's theorem)

Gambino, Jung, Schacht [arXiv:1905.08209, PLB]

Constrain contributions from higher order coefficients
using unitarity bounds

$$
\sum_{n=0}^{N}\left|a_{n}\right|^{2} \leq 1 \quad \sum_{n=0}^{N}\left(\left|b_{n}\right|^{2}+\left|c_{n}\right|^{2}\right) \leq 1
$$

e.g.

$$
\chi^{2} \rightarrow \chi^{2}+\chi_{\text {penalty }}^{2}
$$

Other approaches: Dispersive Matrix Lellouch, Martinelli, Simula, Vittorio and similar Bayesian inference method by Flynn, Juttner, Tsang 2303.II 285

UNITARITY CONSTRAINTS and UNCERTAINTY

low q^{2} extrapolation of FNAL f : our method (up to z^{2}) vs Dispersive Matrix In JLQCD case the difference between methods is much smaller

In blue the $\chi_{\text {min }}^{2}$ profile as a function of $f\left(q^{2}=0\right)$ without imposing unitarity. In red with minimum complying with unitarity. Our $\delta_{ \pm} f(0)$ corresponds to $\Delta \chi_{\text {min }}^{2}=1$ from the absolute minimum.
Blue points are generated according to FNAL covariance matrix. Red points survive unitarity filtering: their distribution is much narrower but the points at its edge correspond to small fluctuations in FNAL data. Our $\delta_{ \pm} f(0)$ reflect this and are always larger than its standard deviation. The curves at the edge of our band are consistent with unitarity and represent $\sim 1 \sigma$ fluctuations in FNAL data

FERMIIAB/MILC CALCULATION

First lattice calculation beyond zero recoil for this mode

Our analysis of same exp+lattice data (Jung, PG):
$\left|V_{c b}\right|=39.4(9) 10^{-3}\left(\chi_{\text {min }}^{2}=50\right)$ using only total rate $\left|V_{c b}\right|=42.2_{-1.7}^{+2.8} 10^{-3}$

JLQCD PRELIMINARY RESULTS

JLQCD vs Fermilab/MILC

- reasonably consistent

$$
\Leftrightarrow g @ w \sim 1
$$

T. Kaneko @ Barolo workshop 4/202I Kaneko et al 21 I2.I 3775
Our analysis of same \exp (Belle / 8)+ JLQCD data (Jung, PG):

$$
\left|V_{c b}\right|=40.7(9) 10^{-3}\left(\chi_{\text {min }}^{2}=33\right) \text { using only total rate }\left|V_{c b}\right|=40.8_{-2.3}^{+1.8} 10^{-3}
$$

Binned $V_{c b}$ from Belle'18 data: FNAL/MILC vs JLQCD

Extracting $V_{c b}$ from each bin, FFs only determined by lattice $Q C D$

NEW HPQCD FFS CALCULATION

Tension with Belle 2018 data similar to FNAL

Belle I8+HPQCD

BGL exp	x^{2}	$\left\|V_{c b}\right\|$
0001	78	$41.0(8)$
0101	68	$41.2(8)$
0111	57	$40.8(8)$
1111	57	$40.8(8)$
1121	54	$40.6(8)$
1222	52	$40.6(8)$
2222	50	$40.4(8)$
2232	50	$40.4(8)$
3333	50	$40.4(8)$

HPQCD and FNAL are not really compatible: adding 16 FNAL points increases χ^{2} by 35

Measurement of Differential Distributions of $B \rightarrow D^{*} \ell v_{\ell}$ and Determination of $\left|V_{c b}\right| \mathcal{B}$ Ledm

Measured Shapes + External Branching Ratio Input

BGL(121)	Value	Correlation				
$a_{0} \times 10^{3}$	24.93 ± 1.41	1.00	0.25	-0.21	0.26	-0.30
$b_{0} \times 10^{3}$	13.11 ± 0.18	0.25	1.00	-0.01	-0.01	-0.62
$b_{1} \times 10^{3}$	-11.93 ± 12.72	-0.21	-0.01	1.00	0.25	-0.48
$c_{1} \times 10^{3}$	-0.87 ± 0.98	0.26	-0.01	0.25	1.00	-0.49
$\left\|V_{c b}\right\| \times 10^{3}$	40.77 ± 0.92	-0.30	-0.62	-0.48	-0.49	1.00

CLN	Value	Correlation			
ρ^{2}	1.25 ± 0.09	1.00	0.56	-0.89	0.38
$R_{1}(1)$	1.32 ± 0.08	0.56	1.00	-0.63	-0.03
$R_{2}(1)$	0.85 ± 0.07	-0.89	-0.63	1.00	-0.15
$\left\|V_{c b}\right\| \times 10^{3}$	40.30 ± 0.86	0.38	-0.03	-0.15	1.00

Based on the lattice input at zero-recoil:
$h_{A_{1}}(1)=0.906 \pm 0.013$

$B^{0} \rightarrow D^{*} \ell^{+} \nu$ untagged (189/fb) preliminary [to be submitted to Phys. Rev. D] Belle II

LQCD used only for normalisation at zero recoil ($w=1$)

BGL fit result

BGL truncation order determined by
Nested Hypothesis Test [Phys. Rev. D100, 013005]

	Values		Correlations	χ^{2} / ndf		
$\tilde{a}_{0} \times 10^{3}$	0.89 ± 0.05	1.00	0.26	-0.27	0.07	
$\tilde{b}_{0} \times 10^{3}$	0.54 ± 0.01	0.26	1.00	-0.41	-0.46	
$\tilde{b}_{1} \times 10^{3}$	-0.44 ± 0.34	-0.27	-0.41	1.00	0.56	
$\tilde{c}_{1} \times 10^{3}$	-0.05 ± 0.03	0.07	-0.46	0.56	1.00	

Preliminary
Relative uncertainty (\%) Preliminary

	\tilde{c}_{0}	\tilde{b}_{0}	\tilde{b}_{1}	\tilde{c}_{1}
Statistical	3.3	0.7	44.8	35.4
Finite MC samples	3.0	0.7	39.4	33.0
Signal modelling	3.0	0.4	40.0	30.8
Background subtraction	1.2	0.4	24.8	18.1
Lepton ID efficiency	1.5	0.3	3.1	2.5
Slow pion efficiency	1.5	1.5	18.4	22.0
Tracking of K, π, ℓ	0.5	0.5	0.6	0.5
$N_{B \bar{B}}$	0.8	0.8	1.1	0.8
$f_{+-} / f 00$	1.3	1.3	1.7	1.3
$\mathcal{B}\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)$	0.4	0.4	0.5	0.4
$\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$	0.4	0.4	0.5	0.4
B^{0} lifetime	0.1	0.1	0.2	0.1
Total	6.1	2.5	78.3	64.1

C. Schwanda, Moriond '23
$\left|V_{c b}\right| \eta_{\mathrm{EW}} \mathcal{F}(1)=\frac{1}{\sqrt{m_{B} m_{D^{*}}}}\left(\frac{\left|\tilde{b}_{0}\right|}{P_{f}(0) \phi_{f}(0)}\right)$
$\mathcal{F}(1)=0.906 \pm 0.013$

$$
\left|V_{c b}\right|_{\text {BGL }}=\left(40.9 \pm 0.3_{\text {stat }} \pm 1.0_{\text {syst }} \pm 0.6_{\text {theo }}\right) \times 10^{-3}
$$

10
$\left|V_{c b}\right|_{C L N}=\left(40.4 \pm 0.3_{\text {stat }} \pm 1.0_{\text {syst }} \pm 0.6_{\text {theo }}\right) \times 10^{-3}$

RESULTS BY BABAR AND LHCb

Reanalysis of tagged B^{0} and B^{+} data, unbinned 4 dimensional fit with simplified BGL and CLN
About 6000 events
No data provided yet

No clear BGL(III)/CLN difference but disagreement with HFLAV CLN ffs
$V_{c b}=0.0384(9)$

wed

Measurement of $\left|V_{c b}\right|$ with $B_{s}^{0} \rightarrow D_{s}^{(*)-} \mu^{+} \nu_{\mu}$ decays

$$
\begin{aligned}
\mathcal{R} & \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu}\right)}, \\
\mathcal{R}^{*} & \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{*-} \mu^{+} \nu_{\mu}\right)}
\end{aligned}
$$

$V_{c b}=0.0414(16) \quad C L N$
$V_{c b}=0.0423(17) \quad B G L(222)$

Fit to \exp data and lattice FFs based on HFLAV BRs, employs BGL(222)

SUMMARY

- Despite many new theoretical and exp results, the $V_{c b}$ puzzle persists. However, the level of activity gives hope.
- Inclusive $b \rightarrow c$: new 3loop calculations show pert effects under control, I.2\% accuracy on $\left|V_{c b}\right|$
- New method to study inclusive semileptonic meson decays on the lattice. Exploratory calculations for $m_{b} \sim 2.5 \mathrm{GeV}$ in good agreement with OPE. Promising way to complement/validate the OPE, but still a long way to go
- Exclusive $b \rightarrow c$: uncertainties have been underestimated; several lattice groups are computing necessary FFs at non-zero recoil and new exp analyses are under way but the situation is still unclear. FNAL \& HPQCD in tension with exp spectra, JLQCD gives a more consistent picture with reduced tension with inclusive.

