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FIG. 4. ⇢̄-⌘̄ planes with the SM global fit results in various configurations. The black contours display the 68% and 95%
probability regions selected by the given global fit. The 95% probability regions selected are also shown for each constraint
considered. Top-Left: full SM fit; Top-Right: fit using as inputs the “tree-only” constraints; Bottom-Left: fit using as inputs
only the angle measurements; Bottom-Right: fit using as inputs only the side measurements and the mixing parameter "K in
the kaon system.

fit configuration ⇢̄ ⌘̄

full SM fit 0.161(10) 0.347(10)

tree-only fit ±0.158(26) ±0.362(27)

angle-only fit 0.156(17) 0.334(12)

no-angles fit 0.157(17) 0.337(12)

TABLE IX. Results for the ⇢̄ and ⌘̄ values as extracted from the various fit configurations. The Universal Unitarity Triangle
(UUT) fit includes the three angles inputs and the semileptonic ratio |Vub/Vcb| [91].

1. By fitting the “tree-only” constraints, i.e. processes for which a contribution from new physics is with the
highest probability absent, we test the possibility that all the sources of CP violation come from physics beyond
the SM. The results shown in the top-right panel, which have a two-fold sign ambiguity in the ⇢̄-⌘̄ values, show
that the SM alone contributes to the largest part of the observed CP violation at low energy;

2. We analysed the results that can be obtained by using only the information coming from the measured angles,
“angle-only” fit, bottom-left panel;

3. We analysed the results that can be obtained from the triangle sides fit and ", “sides+ "K” fit, bottom-right
panel.

The importance of |Vcb|
Another CKM unitarity test is the 
Unitarity Triangle (UT) formed by

Vcb plays an important role in UT

and in the prediction of FCNC:
⇥ |VtbVts|2 � |Vcb|2

h
1 +O(�2)

i

"K ⇡ x|Vcb|4 + ...

where it often dominates the 
theoretical uncertainty.
Vub/Vcb constrains directly the UT

Our ability to determine precisely Vcb is crucial for indirect NP searches

1 +
VudV*ub

VcdV*cb
+

VtdV*tb
VcdV*cb

= 0
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Figure 66: Combined average on |Vub| and |Vcb| including the LHCb measurement of |Vub|/|Vcb|,
the exclusive |Vub| measurement from B ! ⇡`⌫, and the |Vcb| average from B ! D`⌫, B !

D⇤`⌫ and Bs ! D(⇤)
s µ⌫ measurements. The dashed ellipse corresponds to a 1� two-dimensional

contour (68% of CL). The point with the error bars corresponds to the inclusive |Vcb| from the
kinetic scheme (Sec. 7.2.2), and the inclusive |Vub| from GGOU calculation (Sec. 7.4.3).

access to many observables besides the branching fraction, such as D(⇤) momentum, q2 distri-3123

butions, and measurements of the D⇤ and ⌧ polarisations (see Ref. [599] and references therein3124

for recent calculations).3125

Experiments have measured two ratios of branching fractions defined as3126

R(D) =
B(B ! D⌧⌫⌧ )

B(B ! D`⌫`)
, (233)

R(D⇤) =
B(B ! D⇤⌧⌫⌧ )

B(B ! D⇤`⌫`)
(234)

where ` refers either to electron or µ. These ratios are independent of |Vcb| and to a large extent,3127

also of the B ! D(⇤) form factors. As a consequence, the SM predictions for these ratios are3128

quite precise:3129

• R(D) = 0.298±0.003: which is an average of the predictions from Refs. [600,601]. These3130

predictions use as input the latest results on the B ! D`⌫ form factors from BABAR and3131

Belle, and the most recent lattice calculations [502,510].3132

• R(D⇤) = 0.252±0.005: where the central value and the uncertainty are obtained from an3133

arithmetic average of the predictions from Refs. [601,602]. These calculations are in good3134

184

UTFIT

Recently: new calculations of FFs by several lattice collaborations and with light-
cone sum rules, new perturbative calculations, all facing the challenges of a precision 
measurements… and several new measurements as well!

HFLAV

Since several 
years the 
inclusive and 
exclusive 
determinations 
of |Vcb| diverge



4 SM Predictions for Rare Decay Branching Ratios 11

Figure 1: Three rapid tests of NP infection in the �F = 2 sector taken from [31] as explained

in the text. The values of |Vcb| extracted from "K, �Md and �Ms as functions of �. 2+1+1
flavours (top), 2 + 1 flavours (middle), average of 2 + 1 + 1 and 2 + 1 cases (bottom). The

green band represents experimental S KS constraint on �.

values of |Vcb| and �. No sign of NP infection in this case. On the other hand, as seen in the
remaining two plots in Fig. 1, this is not the case if 2 + 1 or the average of 2 + 1 + 1 and

A. Buras 2209.03968

Indirect determinations 
of  |Vcb| from loop induced 

ΔF=2 processes
assuming the SM.  They

tend to prefer a high |Vcb|
but sensitive to lattice 
calculations for mixing

see also
W. Altmannshofer’s talk

2112.03437

The Role of Vcb

30 35 40 45

|Vcb incl.

|Vcb excl.

Bs→μμ

B→Xsγ

Bs→ϕμμ @ high q2

B→K *μμ @ high q2

B→Kμμ @ high q2

Bs→ϕμμ @ low q2

B→K *μμ @ low q2

B→Kμμ @ low q2

|Vcb| × 103

|Vcb| from all

rare decays

WA, Lewis 2112.03437

I Predictions for b ! sµµ
rates depend sensitively
on |Vcb|.

I Since many years there
are tensions between
inclusive and exclusive
determinations of Vcb.

I The rare B decay rates
could be partially
explained by a
(very) low |Vcb|.

I Why does almost
everyone use the
inclusive Vcb value?

Wolfgang Altmannshofer (UCSC) (My) Theoretical Perspective April 19, 2023 8 / 24



NEW PHYSICS?
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Figure 2: Constraints on right-handed currents from inclusive and exclusive decays, assuming
LFU.

postulating new physics in right-handed currents. What is new is that even B ! D⇤`⌫ alone
cannot be brought into perfect agreement with B ! Xc`⌫ for any value of CVR .

5.3. Lepton flavour universality violation

In view of the observed tensions with SM expectations in b ! c⌧⌫ and b ! s`` transitions,
investigating e-µ universality in b ! c`⌫ with light leptons is important. Specific new physics
models suggested as solutions to the b ! c⌧⌫ anomalies actually predict such violation. Some
of the experimental analyses assume LFU to hold. These analyses cannot be used in a model-
independent fit allowing for LFU violation. This is because the measurements are not simply
averages of the respective electron and muon observables, but linear combinations with weights
depending on the experimental e�ciencies that can di↵er between electrons and muons even
as a function of kinematical variables. Thus it is of paramount importance that experimental
collaborations present their results separately for electrons and muons.

In the meantime, the existing analyses that already include separate results for electrons
and muons (see table 1) can be used to perform a fit with a non-universal modification of the
SM operator, i.e. Ce

VL
6= Cµ

VL
. The fit result in terms of the lepton-flavour-dependent e↵ective

CKM elements Ṽ `

cb
is shown in figure 3. Both for B ! D`⌫ and B ! D⇤`⌫ the fit not only

shows perfect agreement with LFU, but also implies a stringent constraint on departures from
the LFU limit. Given the good agrement of the constraints from B ! D`⌫ and B ! D⇤`⌫, we
have also performed a combined Bayesian fit of the scenario to both decay modes, marginalizing
over all nuisance parameters. We find

1

2

⇣
Ṽ e

cb
+ Ṽ µ

cb

⌘
= (3.87 ± 0.09)% , (23)

1

2

⇣
Ṽ e

cb
� Ṽ µ

cb

⌘
= (0.022 ± 0.023)% , (24)
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Figure 7: Left: Prediction for the transverse di↵erential B ! D⇤µ⌫ branching ratio in the
SM (blue band) and a scenario with new physics in Cµ

T
(orange band) vs. the Belle

measurement, demonstrating the di↵erent endpoint behaviour at maximum recoil
(q2 = 0). Both scenarios predict the same total B ! D⇤µ⌫ branching ratio. Right:
Comparison of the constraint on the tensor coe�cient C̃µ

T
vs. Ṽ µ

cb
from the total

B ! D⇤µ⌫ branching ratio measurements only (dashed) and using all B ! D⇤µ⌫
measurements (solid).

Neglecting the lepton masses and allowing for NP in CT and CVL , one finds

FH(q2) ⇡ 18q2f2

T
(q2)

m2

B
f2
+(q2)

|CT |2
|1 + CVL |2 . (31)

Figure 8 shows the constraints on the tensor and left-handed scalar operators, which always
appear together in models with a tree-level mediator, see Table 2, specifically in leptoquark
models. The displayed constraints from B ! D`⌫ and B ! D⇤`⌫, shown separately for
electrons and muons, demonstrate clearly the strong sensitivity of B ! D⇤`⌫ to tensor con-
tributions. While the individual modes B ! D⇤e⌫, B ! Dµ⌫, and B ! D⇤µ⌫ show a slight
preference for non-zero NP contributions in either C`

SL
or C`

T
, the combination of B ! D`⌫

and B ! D⇤`⌫ constraints allows neither of these solutions and leads to a strong constraint
on both operators.

6. Conclusions

Semi-leptonic charged-current transitions b ! c`⌫ with ` = e or µ are traditionally used to
measure the CKM element Vcb. In principle, this transition could be a↵ected by new physics
with vector, scalar, or tensor interactions, possibly violating lepton flavour universality. This
is motivated by the long-standing tensions between inclusive and exclusive determinations of
Vcb, but also by hints of a violation of lepton-flavour universality in b ! c⌧⌫ and b ! s``
transitions. We have conducted a comprehensive analysis of general new-physics e↵ects in
b ! c`⌫ transitions, considering for the first time the full operator basis and employing for the
first time in a new physics analysis measurements of B ! D⇤`⌫ angular observables.

18

Differential distributions constrain NP strongly,  SMEFT interpretation
incompatible with LEP data: Crivellin, Pokorski, Jung, Straub…

Jung & Straub, 1801.01112



VIOLATION OF LFU with TAUS
Introduction: The |Vcb| CKM matrix element

Tensions in lepton universality
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INCLUSIVE SEMILEPTONIC B DECAYS
  Inclusive observables are double series in !/mb and αs

Mi =M (0)
i +

↵s

⇡
M (1)

i +
⇣↵s

⇡

⌘2
M (2)

i +
⇣
M (⇡,0)

i +
↵s

⇡
M (⇡,1)

i

⌘ µ2
⇡

m2
b

+
⇣
M (G,0)

i +
↵s

⇡
M (G,1)

i

⌘ µ2
G

m2
b

+M (D,0)
i

⇢3D
m3

b

+M (LS,0)
i

⇢3LS

m3
b

+ ...

Global shape parameters (first moments of the distributions, with various lower 
cuts on El) tell us about mb, mc and the B structure, total rate about |Vcb|

 
OPE parameters describe universal properties of the B meson and of the quarks: 

they are useful in many applications (rare decays, Vub,...) 

Reliability of the method depends on our control of higher order effects.  Quark-
hadron duality violation would manifest itself as inconsistency in the fit.

Kinetic scheme fit includes all corrections , mc constraint from 
sum rules/lattice, and recent  contribution to width.

O(α2
s , αs/m2

b ,1/m3
b)

O(α3
s )



3LOOP CALCULATIONS
Fael, Schoenwald, Steinhauser, 2011.11655, 2011.13654

3loop and 2loop charm mass effects in relation between kinetic and  b massMS

mkin
b (1GeV) = [4163 + 259αs

+ 78α2s
+ 26α3s ] MeV = (4526 ± 15) MeV

3loop correction to total semileptonic width

Γsl = Γ0 f(ρ)[0.9255 − 0.1162αs
− 0.0350α2s

− 0.0097α3s ]
in the kin scheme with  and , μ = 1GeV mc(3GeV) = 0.987 GeV μαs

= mkin
b

Γsl = Γ0 f(ρ)[0.9255 − 0.1140αs
− 0.0011α2s

+ 0.0103α3s ]
in the kin scheme with  and , 
3loop correction tends to lower  and therefore pushes slightly up (~0.5%)

μ = 1GeV mc(2GeV) = 1.091 GeV μαs
= mkin

b /2
Γsl |Vcb |

Using FLAG  one gets mb(mb) = 4.198(12)GeV mkin
b (1GeV) = 4.565(19) GeV

2

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Sample Feynman diagrams which contribute to the
forward scattering amplitude of a bottom quark at LO (a),
NLO (b), NNLO (c) and N3LO (d-f). Straight, curly and
dashed lines represent quarks, gluons and leptons, respec-
tively. The weak interaction mediated by the W boson is
shown as a blob.

compute for the first time ↵3 corrections to �q by spec-
ifying the colour factors of our b ! c`⌫̄ result to QED
and taking the limit mc ! 0. This allows for the deter-
mination of the third-order coe�cient with an accuracy
of 15%.

II. CALCULATION

We apply the optical theorem and consider the forward
scattering amplitude of a bottom quark where at leading
order the two-loop diagram in Fig. 1(a) has to be consid-
ered. It has a neutrino, a lepton and a charm quark as
internal particles. The weak interaction is shown as an
e↵ective vertex. Our aim is to consider QCD corrections
up to third order which adds up to three more loops.
Some sample Feynman diagrams are shown in Fig. 1(b-
f).

The structure of the Feynman diagrams allows the in-
tegration of the massless neutrino-lepton loop which es-
sentially leads to an e↵ective propagator raised to an ✏-
dependent power, where d = 4� 2✏ is the space-time di-
mension. The remaining diagram is at most of four-loop
order.

From the technical point of view there are two basic
ingredients which are crucial to realize our calculation.
First, we perform an expansion in the di↵erence between
the bottom and charm quark mass. It has been shown
in Ref. [27] that the expansion converges quite fast for
the physical values of mc and mb. Second, we apply the
so-called method of regions [44, 45] and exploit the simi-
larities to the calculation of the three-loop corrections to

the kinetic mass [46].
The method of regions [44, 45] leads to two possible

scalings for each loop momentum kµ

• |kµ| ⇠ mb (h, hard)

• |kµ| ⇠ � ·mb (u, ultra-soft)

with � = 1 �mc/mb. We choose the notion “ultra-soft”
for the second scaling to stress the analogy to the cal-
culation of the relation between the pole and the kinetic
mass of a heavy quark, see [46, 47]. Note that the mo-
mentum which flows through the neutrino-lepton loop,
`, has to be ultra-soft since the Feynman diagram has
no imaginary part if ` is hard since the corresponding
on-shell integral has no cut.
Let us next consider the remaining (up to three) mo-

mentum integrations which can be interpreted as a four-
point amplitude with forward-scattering kinematics and
two external momenta: ` and the on-shell momentum
p2 = m2

b . This is in close analogy to the scattering ampli-
tude of a heavy quark and an external current considered
in Ref. [46]. In fact, at each loop order each momentum
can either scale as hard or ultra-soft:

O(↵s) h, u

O(↵2
s) hh, hu, uu

O(↵3
s) hhh, hhu, huu, uuu

Note that all regions where at least one of the loop mo-
menta scales ultra-soft leads to the same integral families
as in Ref. [46, 47]. The pure-hard regions were absent
in [46, 47]; they lead to (massive) on-shell integrals.
At this point there is the crucial observation that the

integrands in the hard regions do not depend on the loop
momentum `. On the other hand, the ultra-soft integrals
still depend on `. However, for each individual integral
the dependence of the final result on ` is of the form

(�2p · `+ 2�)↵ (2)

with known exponent ↵. This means that it is always
possible to perform in a first step the ` integration which
is of the form

Z
dd`

`µ1`µ2 · · ·

(�2p · `+ 2�)↵(�`2)�
. (3)

A closed formula for such tensor integrals with arbitrary
tensor rank and arbitrary exponents ↵ and � can easily
be obtained from the formula provided in Appendix A
of Ref. [45]. We thus remain with the loop integrations
given in the above table. Similar to Eq. (3) we can in-
tegrate all one-loop hard or ultra-soft loops which leaves
us with pure hard or pure ultra-soft contributions up to
three loops.
A particular challenge of our calculation is the high

expansion depth in �. We perform an expansion of all
diagrams up to �12. This leads to huge intermediate ex-
pressions of the order of 100 GB. Furthermore, for some
of the scalar integrals individual propagators are raised



RESIDUAL UNCERTAINTY on Γsl
3

FIG. 1. Scale dependence of �sl at fixed values of the inputs and µkin = 1GeV. Dashed (solid) lines represent the two (three)
loop calculation. In the left plot (µb-dependence) the blue (red) curves are at µc = 3(2)GeV; in the right plot (µc-dependence)
the blue(red) curves µb = mkin

b (mkin
b /2).

uncertainty of 0.6% in �sl and consequently of 0.3% in |Vcb| for our new default scenario, corresponding to µ = 1GeV,
µc = 2GeV and µb = mkin

b /2 ' 2.3GeV.

Beside the purely perturbative contributions, there are various other sources of uncertainty in the calculation of the
semileptonic width [25], but the work done in the last few years has been fruitful. After the O(↵s/m2

b) corrections
[26, 27], the O(↵s⇢3D/m3

b) corrections to �sl have been recently computed in Ref. [20] (the O(↵s⇢3LS) corrections to �sl

follow from the O(↵sµ2
G/m

2
b) and are tiny). They are expressed in terms of mb in the on-shell scheme and of mc(mb).

After converting their result to the kinetic scheme and changing the scale of mc, we find that this new correction,
together with all the terms of the same order generated by the change of scheme, enhances the coe�cient of ⇢3D by
8 to 18%, depending on the various scales. However, the O(↵s⇢3D) terms, after the conversion to the kinetic scheme,
generate new O(µ3↵2

s) and O(µ3↵3
s) contributions that tend to compensate their e↵ect. The resulting final shift on

|Vcb| is +0.05% with µc = 3GeV, µb = mkin
b and +0.1% for µc = 2GeV, µb = mkin

b /2, and we choose to neglect it in
the following.

After the O(↵s⇢3D) contribution, the main residual uncertainty in �sl is related to higher power corrections. The
Wilson coe�cients of the O(1/m4

b , 1/m
5) contributions have been computed [28], but little is known about the

corresponding 27 matrix elements. The Lowest Lying State Approximation (LLSA) [28] has been employed to estimate
them and to guide the extension [5] of Ref. [4] to O(1/m4

b , 1/m
5). In the LLSA, the O(1/m4

b , 1/m
5) contributions

increase the width by about 1%, but there is an important interplay with the semileptonic fit: as shown in Ref. [5], the
O(1/m4

b , 1/m
5) corrections to the moments and their uncertainties modify the results of the fit in a subtle way and the

final change in �sl is about +0.5%, a result stable under changes of the LLSA assumptions [5]. We therefore expect
the O(1/m4

b , 1/m
5) corrections to decrease |Vcb| by 0.25% with respect to the default fit. Although the uncertainty

attached to this value is mostly included in the theoretical uncertainty of the 2014 fit results, we may consider an
additional 0.2%. Further uncertainties stem from unknown O(↵s⇢3LS/m

3
b), O(↵2

s/m
2
b), and O(↵2

s⇢
3
D/m3

b) corrections,
but they are all likely to be at or below the 0.1% level, and of course quark-hadron duality has to break down at some
point. Combining all the discussed sources of uncertainties in a conservative way, we estimate the total remaining
uncertainty in �sl to be 1.2%.

In the end, using the inputs of the 2014 default fit and setting µc = 2GeV, µb = mkin
b /2 for the central value, we

obtain

|Vcb|2014 = 42.48(44)th(33)exp(25)� 10
�3 = 42.48(60) 10�3 (6)

where the uncertainty due to �sl has been reduced by a factor 2 with respect to Ref. [4].

UPDATING THE SEMILEPTONIC FIT

Despite ongoing analyses of the q2 and MX -moments at Belle and Belle II [29, 30], no new experimental result on
the semileptonic moments has been published since the 2014 fit [4]. On the other hand, new lattice determinations

Similar reduction in  dependence. Purely perturbative uncertainty 
(max spread), central values at . 

 effects in the width are known. Additional uncertainty from 
higher power corrections, soft charm effects of , duality violation. 

Conservatively: 1.2% overall theory uncertainty in  (a ~50% reduction) 

Interplay with fit to semileptonic moments, known only to  

μkin ±0.7 %
μc = 2GeV, μαs

= mb/2

O(αs/m2
b , αs/m3

b)
O(αs/m3

bmc)

Γsl

O(α2
s , αsΛ2/m2

b)

Bordone, Capdevila, PG, 2107.00604

2loop
3loop

μc = 2GeV

μc = 3GeV

μαs
= mb /2

2loop
3loop

μαs
= mb



INCLUSIVE SEMILEPTONIC FITS
4

mkin
b mc(2GeV) µ2

⇡ ⇢3D µ2
G(mb) ⇢3LS BRc`⌫ 103|Vcb|

4.573 1.092 0.477 0.185 0.306 -0.130 10.66 42.16

0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

1 0.307 -0.141 0.047 0.612 -0.196 -0.064 -0.420

1 0.018 -0.010 -0.162 0.048 0.028 0.061

1 0.735 -0.054 0.067 0.172 0.429

1 -0.157 -0.149 0.091 0.299

1 0.001 0.013 -0.225

1 -0.033 -0.005

1 0.684

1

TABLE I. Results of the updated fit in our default scenario (µc = 2GeV, µb = mkin
b /2). All parameters are in GeV at the

appropriate power and all, except mc, in the kinetic scheme at µ = 1GeV. The first and second rows give central values and
uncertainties, the correlation matrix follows.

of mb and mc have been presented, improving their precision by roughly a factor 2. We use the FLAG 2019 averages
[16] with Nf = 2 + 1 + 1 for mb and mc,

mc(3GeV) = 0.988(7)GeV,

mb(mb) = 4.198(12)GeV, (7)

which correspond to mc(2GeV) = 1.093(8) and mkin
b (1GeV) = 4.565(19)GeV, where for the latter we have used

option B of [3] for the definition of mkin
b . We now repeat the 2014 fit with both these constraints, slightly updating

the theoretical uncertainty estimates. In view of the small impact of the O(1/m4
b , 1/m

5) and O(↵s⇢3D) corrections
discussed in the previous section, we reduce the theoretical uncertainties used in the fit to the moments with respect
to Ref. [4]. In particular, we consider a 20%, instead of a 30%, shift in ⇢3D and ⇢3LS , and reduce to 4 MeV the safety
shift in mc,b. For all of the other settings and for the selection of experimental data we follow Ref. [4].

While the central values of the fit are almost identical to those of 2014, the uncertainty on mkin
b (mc(3GeV))

decreases from 20(12) to 12(7) MeV, and we get |Vcb| = 42.39(32)th(32)exp(25)� 10�3 with �2
min/dof = 0.46. The

very same fit performed with µc = 2GeV and µb = mkin
b /2 gives

|Vcb| = 42.16(30)th(32)exp(25)� 10�3 (8)

with �2
min/dof = 0.47 and we neglect the very small shift due to the O(↵s⇢3D) correction to �sl. This is our new

reference value and in Table I we display the full results of this fit.

Let us now comment on the interplay between the fit to the moments and the use of Eq. (1). First, we observe that
the fit to the moments is based on an O(↵2

s) calculation [19, 31–34], and that the lower precision in the calculation
of the moments with respect to the width inevitably a↵ects the determination of |Vcb|. This is clearly visible in
Eq. (6), where the theoretical component of the error is larger than the residual theory error associated with the
width. However, only a small part of that uncertainty is related to the purely perturbative corrections, which are
relatively suppressed in many semileptonic moments but quite sizeable in �sl, as we have seen above. In other words,
an O(↵3

s) calculation of the moments is unlikely to improve the precision of the fit significantly, and the inclusion of
O(↵3

s) corrections only in �sl is perfectly justified. On the other hand, an O(↵s/m3
b) calculation of the moments can

have an important impact on the |Vcb| determination. This is because the semileptonic moments, and the hadronic
central moments in particular, are highly sensitive to the OPE parameters. Since the power correction related to ⇢3D
amounts to about 3% percent in Eq. (1), an O(↵s) shift on ⇢3D induced by perturbative corrections to the moments
can have a significant impact in the determination of |Vcb|. Our estimates of the theoretical uncertainties take this
into account. We also note that a fit without theoretical errors is a very poor fit (�2/dof ⇠ 2) with |Vcb| decreased
by slightly less than 1�.

An important problem of the semileptonic fit is the sensitivity to the ansatz employed for the correlation among the
theoretical uncertainties associated with the various observables [24]. We have studied the dependence of the result
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Higher power corrections see a proliferation of parameters. We use the Lowest 
Lying State Saturation Approximation (Mannel,Turczyk,Uraltsev 1009.4622) as loose 
constraint or priors (60% gaussian uncertainty, dimensional estimate for vanishing 
matrix elements) in a fit including higher powers. 

|Vcb | = 42.00(53) × 10−3 Update of 1606.06174



PROSPECTS for INCLUSIVE Vcb

Theoretical uncertainties no longer dominate, we are now close to 1% 
accuracy 

 calculation completed for width (Mannel, Pivovarov) in progress for 
the moments (S. Nandi, PG)

Electroweak (QED) corrections require attention, a study is under way

New observables: FB asymmetry (Turczyk) could be measured already by 
Babar and Belle now, new q2 moments measurements by Belle (2109.01685) 
and Belle II (2205.06372) not yet included in our fit 

Reparametrisation invariance implies that q2 moments depend on a 
smaller set of HQE parameters (Fael, Mannel, Vos), 8 at , but using 
only the q2 moments: |Vcb|= 41.99(65) 10-3 using the same BR inputs we 
employ (2205.10274)

Lattice QCD calculations: HQE determination of matrix elements (PG, 
Melis, Simula 1704.06105) or direct inclusive calculation

O(αsρ3
D /m3

b)

O(1/m4
b)

https://arxiv.org/abs/2205.10274


INCLUSIVE DECAYS ON THE LATTICE
Inclusive processes impractical to treat directly on the lattice. Vacuum current 
correlators computed in euclidean space-time are related to hadrons or 
 decay via analyticity. In our case the correlators have to be computed in the B 

meson, but analytic continuation more complicated: two cuts, decay occurs only 
on a portion of the physical cut.

While the lattice calculation of the spectral density of hadronic correlators is an 
ill-posed problem, the spectral density is accessible after smearing, as provided by 
phase-space integration Hansen, Meyer, Robaina, Hansen, Lupo, Tantalo, Bailas, Hashimoto, Ishikawa

e+e− →
τ

• What about hadronic tensor W(%, q)?
• Elastic channel:
• Inelastic thesholds:
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A NEW APPROACH
4point functions on the lattice are related to the hadronic tensor in euclidean

Hashimoto, PG 2005.13730 

tsrc t1 t2 tsnk

J†
µ Jν

BB

Fig. 4 Valence quark propagators and their truncations. The thin line connecting the

source tsrc and sink tsnk time slices represents the spectator strange quark propagator. A

smearing is introduced for the initial B meson interpolating operator at tsrc and tsnk. The

solid thick lines are the initial b and dashed line denotes the final c quark. The currents J†
µ

and Jν are inserted at t1 and t2, respectively.

see [24–26] for instance.) So far, in the literature, the moments of hadron energy and invari-

ant mass as well as the lepton energy have been considered; our proposal is to analyze the

inverse moments (12) and (13) at sufficiently small ω, instead, to extract |Vcb| or |Vub|. To
actually extract the moments from the experimental data is beyond the scope of this work.

The structure functions Ti have been calculated within the heavy quark expansion

approach. At the tree-level, the explicit form is given in the appendix of [23]. One-loop

or even two-loop calculations have also been carried out [27–29], but they only concern the

differential decay rates (or the imaginary part of the structure functions), and one needs to

perform the contour integral to relate them to the unphysical kinematical region.

4 Lattice calculation strategy

In this section, we describe the method to extract Ti’s from a four-point function calcu-

lated on the lattice. Although we take the B → D(∗)"ν channel to be specific, the extension

to other related channels is straightforward.

We consider the four-point function of the form

CSJJS
µν (tsnk, t1, t2, tsrc) =

∑

x

〈

P S(x, tsnk)J̃
†
µ(q, t1)J̃ν(q, t2)P

S†(0, tsrc)
〉

, (14)

where P S is a smeared pseudo-scalar density operator to create/annihilate the initial B

meson at rest. The inserted currents J̃µ are either vector or axial-vector b → c current

and assumed to carry the spatial momentum projection
∑

x1
eiq·x1J(x1, t1). Thus, the mass

dimension of J̃µ is zero. The quark-line diagram representing (14) is shown in Figure 4.
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∼ ⟨Bs |J†
μ(x, t)Jν(0,0) |Bs⟩

The necessary smearing is provided by phase space integration over the hadronic energy, 
which however is cut by a  with a sharp hedge: sigmoid  can be used to replace 

kinematic  for .   Larger number of polynomials needed for small 
θ 1/(1 + ex/σ)

θ(x) σ → 0 σ

3

are defined in the range 0  x  1. Their first
few terms are T ⇤

0 (x) = 1, T ⇤
1 (x) = 2x � 1, T ⇤

2 (x) =
8x2 � 8x + 1, and others can be obtained recursively
by T ⇤

j+1(x) = (4x � 2)T ⇤
j
(x) � T ⇤

j�1(x). Each term

of h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i can be constructed from

CJJ

µ⌫
(t + 2t0)/CJJ

µ⌫
(2t0) = h µ|e�Ĥt| ⌫i/h µ| ⌫i.

The coe�cients c⇤
j

in (12) are obtained by an integral

c⇤
j

=
2

⇡

Z
⇡

0
d✓K

✓
� ln

1 + cos ✓

2

◆
cos(j✓), (13)

according to the general formula of the Chebyshev ap-
proximation. The Chebyshev approximation is the best
in the sense that its maximum deviation in x 2 [0, 1] is
minimized among all possible polynomials of order N .

The integral kernel K(!, q) is chosen as

K(l)
�

(!) = e2!t0(�
p

q2)2�l(mBs � !)l

⇥✓�(mBs �
p

q2 � !) (14)

for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to
realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function in a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Figure 1 demonstrates how well K(l)

� (!) is approxi-
mated with certain orders of the polynomials, i.e. N = 5,
10 and 20. An example for l = 0 is shown. Here we take
three representative values of �: � = 0.2, 0.1 and 0.05 in
the lattice unit. The comparison is made for parameters
that roughly correspond to our lattice simulation setup:
the inverse lattice spacing 1/a ' 3.61 GeV, amBs ' 1.0,
t0/a = 1. The momentum insertion q is assumed to be
zero. The kernel function is well approximated with rel-
atively low orders of the polynomials, such as N = 10,
when su�ciently smeared, e.g. � = 0.2. For smaller �’s,
the function exhibits a sharp change near the thresh-
old ! = 1.0, and the Chebyshev approximation becomes
poorer. For better approximation, one needs higher or-
der polynomials, like N = 20. Eventually we have to
take the limit of � ! 0, and the error due to finite order
of polynomials has to be estimated. For the other cases,
l = 1 and 2, the polynomial approximations are better
than those for l = 0.

We perform a pilot study of the method described
above using a lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [17], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks only in the valence
sector, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
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FIG. 1. Approximation of the weight function K(l=0)
� (!) with

the Chebyshev polynomials of e�!. For each value of the
smearing width � (= 0.2 (top), 0.1 (middle), 0.05 (bottom)),
the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
true curve (solid curve).

The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
�m2

Ds
)/2mBs ' 1.1 GeV. The

lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calculate
the forward-scattering matrix elements with spatial mo-
menta q at (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units of
2⇡/La. The number of lattice configurations averaged is
100, and the measurement is performed with four di↵er-
ent source time-slices.

For a fixed spatial momentum q, we compute a four-
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FIG. 1. Approximation of the weight function K
(l=0)
� (!) with

the Chebyshev polynomials of e
�!. For each value of the

smearing width � (= 0.2 (top), 0.1 (middle), 0.05 (bottom)),
the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
true curve (solid curve).

realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function over a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Fig. 1 demonstrates how well K(l)

� (!) is approximated
with certain orders of the polynomials, i.e. N = 5, 10
and 20. An example for l = 0 is shown. Here we take
three representative values of �: 0.2, 0.1 and 0.05 in lat-
tice units. The comparison is made for parameters that

roughly correspond to our lattice setup: the inverse lat-
tice spacing 1/a ' 3.61 GeV, amBs ' 1.0, t0/a = 1.
The momentum insertion q is set to zero. The kernel
function is well approximated with relatively low orders
of the polynomials, such as N = 10, when su�ciently
smeared, e.g. � = 0.2. For smaller �’s, the function ex-
hibits a more rapid change near the threshold ! = 1.0,
and one needs higher orders, like N = 20. Eventually we
have to take the limit � ! 0, and the error due to finite
N has to be estimated. For l = 1 and 2 the polynomial
approximations are better than those for l = 0.

We perform a pilot study of the method described
above using lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [21], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks in the valence sec-
tor, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
� m2

Ds
)/2mBs ' 1.16 GeV.

The lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calcu-
late the forward-scattering matrix elements with spatial
momenta q of (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units
of 2⇡/La. The number of lattice configurations averaged
is 100, and the measurement is performed with four dif-
ferent source time-slices.

For a fixed spatial momentum q, we compute a four-
point function to extract CJJ

µ⌫
(t; q) (more details of the

lattice calculation are presented in [9]). We perform the
!-integral (4) using the representation (12). Matrix ele-
ments of the shifted Chebyshev polynomials are obtained
from CJJ

µ⌫
(t+2t0; q)/CJJ

µ⌫
(2t0; q) at various t’s (and t0 =

1) by a fit with constraints |h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i| <

1, which is a necessary condition for the Chebyshev poly-
nomials.

First, we inspect how well the Chebyshev approxima-
tion works by comparing the results for X̄(2) obtained
with the polynomial order N = 5, 10, 15 at various val-
ues of �, the width of the smearing. Fig. 2 shows that the
dependence on � is mild and the limit of � = 0 is already
reached at around � = 0.05. The dependence on N is
not significant, which indicates that the approximation
is already saturated at N ' 10. This is crucial because
the error of the lattice data is too large to constrain the
matrix elements h µ|T ⇤

j
(e�Ĥ)| ⌫i/h µ| ⌫i at j ' 10 or

larger. The results for X̄(0) and X̄(1) show the similar
tendency. We take � = 0.05 in the following analysis; the
results are within statistical error even if we extrapolate
to � = 0.

The lattice results for X̄ =
P2

l=0 X̄(l) are compared
with the OPE predictions in Fig. 3 as a function of q2.
Here, the results for di↵erent polarizations, i.e. longi-
tudinal (k: µ, ⌫ = 0 and 3) and perpendicular (?: µ,

lim
σ→0

lim
V→∞

X̄σ

important:



LATTICE VS OPE mkin

b
(JLQCD) 2.70 ± 0.04

mc(2 GeV) (JLQCD) 1.10 ± 0.02

mkin

b
(ETMC) 2.39 ± 0.08

mc(2 GeV) (ETMC) 1.19 ± 0.04

µ2
⇡ 0.57 ± 0.15

⇢3
D

0.22 ± 0.06

µ2
G
(mb) 0.37 ± 0.10

⇢3
LS

�0.13 ± 0.10

↵(4)
s (2 GeV) 0.301 ± 0.006

Table 1. Inputs for our OPE calculation. All parameters are in GeV at the appropriate power and
all, except mc, in the kinetic scheme at µ = 1 GeV. The heavy-quark masses for the ETMC setup
are 100% correlated. As a remnant of the semileptonic fit, we include a 50% correlation between
µ2
⇡ and ⇢3D.

0.1–0.2 GeV3, they could shift µ2
⇡ and µ2

G
by 0.02–0.1 GeV in going from the physical value

of mb to mb ⇠ 2.5 GeV, which amounts to a 5–25% shift. We show the inputs of our
calculation in table 1. While the heavy-quark masses are slightly different between the two
setups, we adopt the same expectation values in both cases. Their central values take into
account the shift related to the strange spectator, while the uncertainties follow from the
uncertainty of the fit of ref. [68], the SU(3) symmetry breaking, and the lower b mass.

Beside the parametric uncertainty of the inputs, our results are subject to an uncer-
tainty due the truncation of the expansion in eq. (4.1) and to possible violations of quark-
hadron duality. We estimate the former by varying the OPE parameters, the heavy-quark
masses, and ↵s in an uncorrelated way and adding the relative uncertainties in quadrature.
In particular, we shift mb,c by 6 MeV, µ2

⇡,G
by 15%, and ⇢3

D,LS
by 25%. These corrections

should mimic the effect of higher-power corrections. Since in the case of the q2 spectrum
and differential moments we restrict ourselves to O(↵s) corrections, we include the relative
uncertainty in the same way, shifting ↵s by 0.15, which corresponds to a 50% uncertainty.
In the case of the total width and total moments, higher-order perturbative corrections are
known and the perturbative uncertainty can be reduced, as discussed below.

4.2 Comparison with lattice results

4.2.1 q2 spectrum and differential moments

We start our comparison of lattice and OPE results with the q2 spectrum and the differential
moments introduced in eq. (2.39) and in eq. (2.40). Only the O(↵s) perturbative corrections
are included in this case. Figure 14 shows the q2 spectrum in the SM, namely with a V �A

current. Despite the large uncertainty of the OPE prediction, about 30% in the JLQCD
case and 50% in the ETMC case, the overall agreement is good. The OPE uncertainty is
dominated by the power corrections. We also stress that close to the partonic endpoint,
corresponding to 1.27 GeV2 and 0.82 GeV2 in the two cases, we do not expect the OPE
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Figure 14. Differential q2 spectrum, divided by |q|, in the SM. Comparison of OPE with JLQCD
(top panel) and ETMC (bottom panel) data are shown.

calculation to be reliable, as discussed above. The corresponding hadronic endpoints are
1.35 GeV2 and 0.75 GeV2, respectively.

The uncertainties affecting both calculations can be greatly reduced by considering
the differential moments. In particular, the OPE uncertainty becomes smaller because of
the cancellations between power corrections to the numerator and to the denominator. To
expose the cancellations we expand the ratios in powers of ↵s and 1/mb. In figure 15 we
show the first differential lepton energy moment, L1(q2), in the SM, comparing the OPE
with ETMC data. As expected, the relative uncertainty of both the OPE calculation and
of the lattice data is much smaller than in the bottom panel of figure 14 and we observe
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Twisted boundary conditions allow
for any value of  
Smaller statistical uncertainties

⃗q2

OPE inputs from fits to exp data (physical 
mb), HQE of meson masses on lattice
             1704.06105, J.Phys.Conf.Ser. 1137 (2019) 1, 012005

We include  and  terms

Hard scale 
We do not expect OPE to work at high

O(1/m3
b) O(αs)

m2
c + q2 ∼ 1−1.5 GeV

|q |

ETMC twisted mass

JLQCD domain wall fermions

PG, Hashimoto, Maechler, Panero, Sanfilippo, Simula, Smecca, Tantalo, 2203.11762

https://arxiv.org/abs/1704.06105
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Figure 19. Differential moment L1(q2) in the various channels. The plots show the comparison
between OPE and ETMC data.

Figure 20. Differential moment L2c = L2 � L2
1 in the various channels. The plots show the

comparison between OPE and ETMC data.
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L1 = ⟨Eℓ(q2)⟩

smaller errors, cleaner comparison with OPE, individual channels AA, VV, parallel 
and perpendicular polarization, could help extracting its parameters
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Inclusive semi-leptonic ⌫ (B) mesons decay at the physical 1 quark mass Alessandro Barone

Figure 4: The left plot shows the estimate of -̄ (q2
) with the two di�erent strategies for 8 di�erent q2. The

right plot shows the same data on the left multiplied by
p
q2. The curves with error bands are determined

through a a polynomial fit to interpolate the points and the area below the curves is directly proportional to
the �/|+21 |

2.

1 quark discretisation e�ects of order O((<00)=), O(( p0) and O(( p0) (<00)=) by tuning three
non-perturbative parameters, one of this being the bare mass <0.

For the computation we average over 60 di�erent gauge configurations and the measurements
are performed on 4 di�erent source planes linearly spaced. We use Z2 sources to improve the
signal. We induce 8 di�erent momenta in the four-point functions using twisted boundary conditions
[25, 26] with same momentum in all the three directions. Considering q = 2c

!
n in lattice units

we have n = (=G , =H , =I) ⌘ (\, \, \), where \ indicates the twist. We choose them such that all

the momenta are linearly spaced in q
2 and in particular \: = 1.90

q
:

3 , where the factor 1.90 is

determined by the value of q2
max on the given ensemble.

6. Results

We now summarise the main results of this pilot study. In Figure 4 we show the result of -̄ (q2
)

at di�erent q2. The four data points on each q
2 correspond, as before, to the possible combinations

of Chebyshev and Backus-Gilbert with either l0 = 0 or l0 = 0.9lmin. We can immediately see
that all the points agree with each other in the full range. However, at higher q

2 we note larger
deviations; this is likely due to the greater di�erence in the approximation as the kinematic range
in l shrinks, as shown in Figure 3.

The plot on the right shows
p
q2 -̄ (q2

) and the area below the curves is directly proportional
to the decay rate �/|+21 |

2. Since this is a purely qualitative study, we do not quote any number for
the final decay rate. However, the value we obtain is in the right ballpark if compared with the ⌫

meson decay rate assuming (* (3) flavour symmetry. The final statistical error, at this preliminary
stage, is of order 10% and all four values are in agreement within one standard deviation.

7. Summary and outlook

In this work we have shown that there are promising prospects for the study of inclusive decays
on the lattice. At this stage, our study is qualitative and focuses on setting the basis for a solid

8

Barone, Hashimoto, Juttner, Kaneko, Kellermann, Lattice 2022

First results at the physical b mass

Relativistic heavy quark
effective action for b

Bs decays

domain wall fermions

~10% determination of
total width

possibly compare with
partial width at low q2



EXCLUSIVE DECAYS

There are 1(2) and 3(4) FFs for D and D*  for light (heavy) leptons, for instance

Information on FFs from LQCD (at high q2), LCSR (at low q2), HQE, exp, 
extrapolation, unitarity constraints, … 

3

factors arises from the following definitions: For B̄ ! D, one commonly defines

hD(k)| c̄�µb |B̄(p)i =


(p+ k)µ �

M2
B �M2

D

q2
qµ

�
fB!D
+ (q2) +

M2
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D

q2
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0 (q2) , (1)

hD(k)| c̄�µ⌫b |B̄(p)i =
2i

MB +MD
(kµp⌫ � pµk⌫)fT (q

2, µ) , (2)

with �µ⌫ = i
2 [�

µ, �⌫ ]. In the above, f+ is the vector form factor, fT is the scale-dependent tensor form factor arising
only in NP scenarios (its definition corresponds to the one in Ref. [21]), and f0 doubles as the scalar form factor:

hD(k)| c̄b |B̄(p)i =
M2

B �M2
D

mb �mc
fB!D
0 (q2) . (3)

The matrix elements of the remaining axial and pseudoscalar currents are zero by virtue of QCD conserving parity.

For B̄ ! D⇤, one commonly defines
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where ⌘ denotes the D⇤ polarization vector, V the vector form factor, and A1,12 are the axial form factors. Note
that the relative sign between our eq. (4) and the decomposition in ref. [22] arises from the di↵erent definition of
the Levi-Civita tensor: we use "0123 = +1. Moreover, in the decomposition above A12 correspond to longitudinal
polarizations of the emitted virtual W , which is more convenient (e.g. when inferring form factors from lattice QCD)
than parametrizations involving the form factor A2, see e.g. [22]. The function A0 doubles as the pseudo-scalar form
factor,

hD⇤(k, ⌘)| c̄�5b |B̄(p)i = �2iMD⇤
⌘⇤ · q

mb +mc
A0 , (7)

whereas the matrix element of the scalar current vanishes by virtue of QCD conserving parity.

Exact relations at q2 = 0 between some of the form factors ensure the absence of unphysical singularities in eq. (1)
and eq. (5). These relations read:

f+(q
2 = 0) = f0(q

2 = 0) ,

A0(q
2 = 0) =

MB +MD⇤

2MD⇤
A1(q

2 = 0)�
MB �MD⇤

2MD⇤
A2(q

2 = 0) .
(8)

A further exact relation arises due to algebraic identities involving the Lorentz structures �µ⌫ and �µ⌫�5 [22]:

T1(0) = T2(0) . (9)

Further approximate relations arise from the HQE of the hadronic matrix elements. These relations, the parametric
models involved, and theoretical inputs needed for the subsequent statistical analyses are the subject of the remainder
of this section.

A. Heavy-Quark Expansion and models

The combination of heavy-quark spin symmetry and heavy-quark flavour symmetry permits to relate B̄(⇤)(v) !

D(⇤)(v0) matrix elements with each other in a simultaneous expansion in the strong coupling ↵s and the inverse pole

b

d, u

c

l

v

X
d,u

B Vcb	
= D, D*, …

A model independent parametrization is necessary
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F i g . 1 . Bes t es t i ma t e o f t he t rue va l ue f rom t wo cor r e l a t ed
da t a po i n t s , us i ng i n t he X 2 t he emp i r i ca l cova r i ance ma t r i x o f
t he meaur emen t s. The e r ror ba r s show i nd i v i dua l and t o t a l

e r ror s .
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I n phys i cs app l i ca t i ons , i t i s r a r e l y t he case t ha t t he
cova r i ance be t ween t he bes t es t i ma t es o f t wo phys i ca l
quan t i t i es # 2 , each g i ven by t he a r i t hme t i c ave r age o f
d i r ec t measur emen t s ( x , =X , = I I nY- k - I X k ) , can be
eva l ua t ed f rom t he samp l e cova r i ance o f t he t wo ave r -
ages

1 n _ _
COV( x � x , ) =

n (n
-

1)

�

L
t

(X i k

�

( Xj k

1 a2 X 2
(V- , ) � = 2 aX aX

J
~ , ' X ,

#2

Mor e f r equen t i s t he we l l unde r s t ood case i n wh i ch
t he phys i ca l quan t i t i es a r e ob t a i ned as a r esu l t o f a X2

m i n i m i za t i on , and t he t e rms o f t he i nve r se o f t he e r ror
ma t r i x a r e r e l a t ed t o t he cur va t ur e o f X2 a t i t s m i n i -
mum

I n mos t cases one de t e rm i nes i ndependen t va l ues o f
phys i ca l quan t i t i es w i t h t he same de t ec t or , and t he
cor r e l a t i on be t ween t hem or i g i na t es f rom t he de t ec t or
ca l i br a t i on e r ror s . Concep t ua l l y , t he use o f Eq . (2) i n
t h i s case wou l d cor r espond t o hav i ng a " samp l e o f
de t ec t or s " , w i t h each o f wh i ch a measur emen t o f a l l
t he phys i ca l quan t i t i es i s t o be pe r f ormed .

A way t o bu i l d t he cova r i ance ma t r i x f rom t he
d i r ec t measur emen t s i s t o cons i de r t he or i g i na l mea -
sur emen t s and t he ca l i br a t i on cons t an t s as a common
se t o f i ndependen t and uncor r e l a t ed measur emen t s ,
and t hen t o ca l cu l a t e cor r ec t ed va l ues t ha t t ake i n t o

He r ea f t e r t he symbo l X , w i l l i nd i ca t e t he va r i ab l e assoc i -
a t ed t o t he i t h phys i ca l quan t i t y and X k i t s k t h d i r ec t
measur emen t ; x , t he bes t es t i ma t e o f i t s va l ue , ob t a i ned
by an ave r age ove r many d i r ec t measur emen t s or i nd i r ec t
measur emen t s , Q , t he s t anda rd dev i a t i on , and y , t he va l ue
cor r ec t ed f or t he ca l i br a t i on cons t an t s . The we i gh t ed ave r -
age o f seve r a l va l ues x , w i l l be deno t ed by x .

accoun t t he ca l i br a t i on cons t an t s. The e r ror propaga -
t i on w i l l prov i de au t oma t i ca l l y t he f u l l cova r i ance ma -
t r i x o f t he se t o f r esu l t s . Le t us de r i ve i t f or t wo cases
t ha t happen f r equen t l y , and t hen proceed t o t he gen -
e r a l case .

2 . 1 . O f f se t e r ror

Le t x , ± o- , be t he i = 1 , 2 , . . . , n r esu l t s o f i ndepen -
den t measur emen t s and VX t he (d i agona l ) e r ror ma t r i x .
Le t assume t ha t t hey a r e a l l a f f ec t ed by t he same
ca l i br a t i on cons t an t c , hav i ng an e r ror or . The cor -
r ec t ed r esu l t s a r e t hen y , = x , + c . We can assume , f or
s i mp l i c i t y , t ha t t he mos t probab l e va l ue o f c i s 0 , i . e .
t he de t ec t or i s we l l ca l i br a t ed . One has t o cons i de r t he
ca l i br a t i on cons t an t as t he phys i ca l quan t i t y Xn+ t > t he
bes t es t i ma t e o f wh i ch i s xn+ t = 0 . A t e rm VXn+ , + _

O , c2 mus t be added t o t he e r ror cova r i ance .
The cova r i ance ma t r i x o f t he cor r ec t ed r esu l t s i s

g i ven by t he t r ans f orma t i on

VY= MVXMT ,

whe r e M� = aY / aX , I x , . The e l emen t s o f VY a r e g i ven
by

ay , ay ,
VY.

�

ax , [ , VX � .

I n t h i s case we ge t

o - 2(Y) =Q 2
+QC

2
,

Cov (Y� Y) =Q2

307

The t o t a l e r ror on t he s i ng l e measur emen t i s g i ven by
t he comb i na t i on i n quadr a t ur e o f t he i nd i v i dua l and
t he common e r ror , and a l l t he cova r i ances a r e equa l t o
or e . To ve r i f y , i n a s i mp l e case , t ha t t he r esu l t i s
r easonab l e , l e t us cons i de r on l y t wo i ndependen t quan -

4 . 2

4 . 0

38
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F i g . 2 . R measur emen t s f rom PETRA and PEP expe r i men t s
w i t h t he bes t f i t s o f QED+QCD t o a l l t he da t a ( f u l l l i ne ) and
on l y be l ow 36 GeV (dashed l i ne ) . A l l da t a po i n t s a r e cor r e -

l a t ed ( see t ex t ) .

Nuc l ea r I ns t rumen t s and Me t hods i n Phys i cs Resea r ch A 346 (1994) 306 - 311
Nor t h - Ho l l and

On t he use o f t he cova r i ance ma t r i x t o f i t cor r e l a t ed da t a

G . D ' Agos t i n i
D i pa r t i men t o d i F i s i ca , Un i ue r s i t à " La Sap i enza " and I NFN , Roma , I t a l y

(Rece i ved 10 Decembe r 1993 ; r ev i sed f orm r ece i ved 18 Februa r y 1994)

Bes t f i t s t o da t a wh i ch a r e a f f ec t ed by sys t ema t i c unce r t a i n t i es on t he norma l i za t i on f ac t or have t he t endency t o produce cur ves
l owe r t han expec t ed i f t he cova r i ance ma t r i x o f t he da t a po i n t s i s used i n t he de f i n i t i on o f t he X2 . Th i s pape r shows t ha t t he e f f ec t
i s a d i r ec t consequence o f t he hypo t hes i s used t o es t i ma t e t he emp i r i ca l cova r i ance ma t r i x , name l y t he l i nea r i za t i on on wh i ch t he
usua l e r ror propaga t i on r e l i es . The b i as can become unaccep t ab l e i f t he norma l i za t i on e r ror i s l a rge , or a l a rge numbe r o f da t a
po i n t s a r e f i t t ed .

1 . I n t roduc t i on

I t i s f r equen t l y t he case t ha t one has t o f i t a t heor e t -
i ca l cur ve t hrough expe r i men t a l da t a a f f ec t ed by ove r -
a l l sys t ema t i c e r ror s , o f t en j us t a common unce r t a i n t y
on t he norma l i za t i on f ac t or . I f t he e r ror ma t r i x V o f
t he da t a po i n t s i s known , one can so l ve t he prob l em by
m i n i m i z i ng t he X 2 , de f i ned as

X2 - aTV 1 A ,

whe r e A i s t he vec t or o f t he d i f f e r ences be t ween t he
t heor e t i ca l and t he expe r i men t a l va l ues .

I n pe r f orm i ng t h i s k i nd o f f i t i t i s no t uncommon t o
ob t a i n r esu l t s t ha t con t r ad i c t expec t a t i ons . To g i ve a
nume r i ca l examp l e , l e t us cons i de r t he r esu l t s o f t wo
measur emen t s , 8 . 0 ± 2% and 8 . 5 ± 2% , hav i ng a 10%
common norma l i za t i on e r ror ( see F i g . 1) . Assum i ng
t ha t t he t wo measur emen t s r e f e r t o t he same phys i ca l
quan t i t y , t he bes t es t i ma t e o f i t s t rue va l ue can be
ob t a i ned by f i t t i ng t he po i n t s t o a cons t an t . M i n i m i z i ng
X2 as de f i ned i n Eq . (1) , w i t h V es t i ma t ed emp i r i ca l l y
by t he da t a , one ob t a i ns a va l ue o f 7 . 87 ± 0 . 81 , wh i ch i s
a t l eas t surpr i s i ng , s i nce t he mos t probab l e r esu l t i s
ou t s i de t he i n t e r va l de t e rm i ned by t he t wo measur ed
va l ues .

A r ea l examp l e o f t h i s s t r ange e f f ec t happened
dur i ng t he g l oba l ana l ys i s o f t he R r a t i o i n e+ e -
pe r f ormed by t he CELLO co l l abor a t i on [1] , shown i n
F i g. 2 . The da t a po i n t s r epr esen t t he ave r ages , i n
ene rgy b i ns , o f t he r esu l t s o f t he PETRA and PEP
expe r i men t s . They a r e a l l cor r e l a t ed and t he e r ror ba r s
show t he t o t a l e r ror ( see r e f . [1] f or de t a i l s ) . I n pa r t i cu -
l a r , a t t he i n t e rmed i a t e s t age o f t he ana l ys i s shown i n
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t he f i gur e , an ove r a l l 1% sys t ema t i c e r ror due t o t heo -
r e t i ca l unce r t a i n t i es was i nc l uded i n t he cova r i ance
ma t r i x . The R va l ues above 36 GeV show t he f i r s t h i n t
o f t he r i se o f t he e+ e - c ross sec t i on due t o t he Z°
po l e . I t was a t t ha t t i me ve r y i n t e r es t i ng t o prove t ha t
t he obse r va t i on was no t j us t a s t a t i s t i ca l f l uc t ua t i on . I n
orde r t o t es t t h i s , t he da t a we r e f i t t ed w i t h a t heor e t i -
ca l f unc t i on hav i ng no Z° con t r i bu t i ons and us i ng on l y
t he da t a be l ow a ce r t a i n ene rgy . The expec t a t i on was
t o obse r ve a f as t i nc r ease o f X Z / v , whe r e v i s t he
numbe r o f degr ees o f f r eedom , above 36 GeV , i nd i ca t -
i ng t ha t a t heor e t i ca l pr ed i c t i on w i t hou t Z° wou l d be
i nadequa t e t o desc r i be t he h i gh ene rgy da t a . The sur -
pr i s i ng r esu l t was a " r epu l s i on " ( see F i g. 2) be t ween
t he expe r i men t a l da t a and t he f i t : i nc l ud i ng t he h i gh
ene rgy po i n t s w i t h l a rge r R , a l owe r cur ve was ob -
t a i ned , wh i l e X21v r ema i ned a l mos t cons t an t .

I t w i l l be shown i n t h i s pape r t ha t such an e f f ec t ,
wh i ch appea r s i f a s i zeab l e norma l i za t i on unce r t a i n t y i s
common t o a da t a samp l e , or i g i na t es f rom t he s t anda rd
way o f pe r f orm i ng t he e r ror propaga t i on , whe r e on l y
f i r s t de r i va t i ves a r e cons i de r ed . I n orde r t o ge t ana l y t i -
ca l r esu l t s , t he s i mp l e case o f on l y t wo da t a po i n t s w i l l
be cons i de r ed . S i nce t he conc l us i ons a r e based on t he
emp i r i ca l cova r i ance ma t r i x o f t he expe r i men t a l po i n t s ,
i t w i l l f i r s t be shown how t o bu i l d i t i n t he mos t gene r a l
case , s i nce t h i s prob l em i s usua l l y no t d i scussed i n
books o f s t a t i s t i cs ' .

# t Apa r t f rom r e f . [1] , t he on l y t ex t book known t o t he
au t hor , whe r e t he cons t ruc t i on o f t he cova r i ance ma t r i x
f rom expe r i men t a l da t a r e l a t ed by common e r ror s i s d i s -
cussed , i s t he r ecen t one by Ba r l ow [2] . A mor e comp l e t e
t r ea t men t i s g i ven i n t he D I N norms [3] .
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I n phys i cs app l i ca t i ons , i t i s r a r e l y t he case t ha t t he
cova r i ance be t ween t he bes t es t i ma t es o f t wo phys i ca l
quan t i t i es # 2 , each g i ven by t he a r i t hme t i c ave r age o f
d i r ec t measur emen t s ( x , =X , = I I nY- k - I X k ) , can be
eva l ua t ed f rom t he samp l e cova r i ance o f t he t wo ave r -
ages
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Mor e f r equen t i s t he we l l unde r s t ood case i n wh i ch
t he phys i ca l quan t i t i es a r e ob t a i ned as a r esu l t o f a X2

m i n i m i za t i on , and t he t e rms o f t he i nve r se o f t he e r ror
ma t r i x a r e r e l a t ed t o t he cur va t ur e o f X2 a t i t s m i n i -
mum

I n mos t cases one de t e rm i nes i ndependen t va l ues o f
phys i ca l quan t i t i es w i t h t he same de t ec t or , and t he
cor r e l a t i on be t ween t hem or i g i na t es f rom t he de t ec t or
ca l i br a t i on e r ror s . Concep t ua l l y , t he use o f Eq . (2) i n
t h i s case wou l d cor r espond t o hav i ng a " samp l e o f
de t ec t or s " , w i t h each o f wh i ch a measur emen t o f a l l
t he phys i ca l quan t i t i es i s t o be pe r f ormed .

A way t o bu i l d t he cova r i ance ma t r i x f rom t he
d i r ec t measur emen t s i s t o cons i de r t he or i g i na l mea -
sur emen t s and t he ca l i br a t i on cons t an t s as a common
se t o f i ndependen t and uncor r e l a t ed measur emen t s ,
and t hen t o ca l cu l a t e cor r ec t ed va l ues t ha t t ake i n t o

He r ea f t e r t he symbo l X , w i l l i nd i ca t e t he va r i ab l e assoc i -
a t ed t o t he i t h phys i ca l quan t i t y and X k i t s k t h d i r ec t
measur emen t ; x , t he bes t es t i ma t e o f i t s va l ue , ob t a i ned
by an ave r age ove r many d i r ec t measur emen t s or i nd i r ec t
measur emen t s , Q , t he s t anda rd dev i a t i on , and y , t he va l ue
cor r ec t ed f or t he ca l i br a t i on cons t an t s . The we i gh t ed ave r -
age o f seve r a l va l ues x , w i l l be deno t ed by x .

accoun t t he ca l i br a t i on cons t an t s. The e r ror propaga -
t i on w i l l prov i de au t oma t i ca l l y t he f u l l cova r i ance ma -
t r i x o f t he se t o f r esu l t s . Le t us de r i ve i t f or t wo cases
t ha t happen f r equen t l y , and t hen proceed t o t he gen -
e r a l case .

2 . 1 . O f f se t e r ror

Le t x , ± o- , be t he i = 1 , 2 , . . . , n r esu l t s o f i ndepen -
den t measur emen t s and VX t he (d i agona l ) e r ror ma t r i x .
Le t assume t ha t t hey a r e a l l a f f ec t ed by t he same
ca l i br a t i on cons t an t c , hav i ng an e r ror or . The cor -
r ec t ed r esu l t s a r e t hen y , = x , + c . We can assume , f or
s i mp l i c i t y , t ha t t he mos t probab l e va l ue o f c i s 0 , i . e .
t he de t ec t or i s we l l ca l i br a t ed . One has t o cons i de r t he
ca l i br a t i on cons t an t as t he phys i ca l quan t i t y Xn+ t > t he
bes t es t i ma t e o f wh i ch i s xn+ t = 0 . A t e rm VXn+ , + _

O , c2 mus t be added t o t he e r ror cova r i ance .
The cova r i ance ma t r i x o f t he cor r ec t ed r esu l t s i s

g i ven by t he t r ans f orma t i on

VY= MVXMT ,

whe r e M� = aY / aX , I x , . The e l emen t s o f VY a r e g i ven
by

ay , ay ,
VY.

�

ax , [ , VX � .

I n t h i s case we ge t

o - 2(Y) =Q 2
+QC

2
,

Cov (Y� Y) =Q2
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The t o t a l e r ror on t he s i ng l e measur emen t i s g i ven by
t he comb i na t i on i n quadr a t ur e o f t he i nd i v i dua l and
t he common e r ror , and a l l t he cova r i ances a r e equa l t o
or e . To ve r i f y , i n a s i mp l e case , t ha t t he r esu l t i s
r easonab l e , l e t us cons i de r on l y t wo i ndependen t quan -

4 . 2

4 . 0

38

20 30 40 50
FS (GeV )

F i g . 2 . R measur emen t s f rom PETRA and PEP expe r i men t s
w i t h t he bes t f i t s o f QED+QCD t o a l l t he da t a ( f u l l l i ne ) and
on l y be l ow 36 GeV (dashed l i ne ) . A l l da t a po i n t s a r e cor r e -

l a t ed ( see t ex t ) .

Standard   fits
sometimes lead

to paradoxical results  

χ2

cases o f o f f se t and norma l i za t i on e r ror . As be f or e , we

assume t ha t t he de t ec t or i s we l l ca l i br a t ed , i . e . t he
mos t probab l e va l ue o f t he ca l i br a t i on cons t an t i s ,
r espec t i ve l y f or t he t wo cases , 0 and 1 , and hence

Y , =x , .

3 . 1 . O f f se t e r ror

Le t x l ± v l and z 2 ± az be t he t wo measur ed va l -
ues , and o - , t he common e r ror . The X 2 i s

X2=
D

[ ( x , - k )2( 0 ,2+QZ)+( x2 - k )2( v

_2( z l _ k ) ( x2 _ k )o , 21 ,

X I v2 +x20 - 1
k

�

0 ,
+0 , 2

�

(=x ) ,

2 2
2 Q10 - 2 2( k ) = a2 +0 - 2 +O IC .

1 z

3 . 2 . Norma l i za t i on e r ror

Xz=
D [ ( x , - k ) z

(
n - 2 - i - x20 ' f )

+( x2 - k ) z
(

Q I +x l 0 f )

- 2( x l - k ) ( xz - k ) x l x z o -f ] ,

x 1 v2 +x 2 0- 1
k

�

01 +o , 2

�

(X I _xz )2Q f
,

012012+( x20 , 2+x2v - i ) 2
~

2
( k )

�

o , + a2+ ( x l - x2)2

�

2

G . D Agos t i n i / Nuc l . I ns t r . and Me t h . i n Phys . Res. A 346 (1994) 306 - 311

0 ,C2 )

whe r e D = o , 012 + (0 - i + 0 , 2)0 . z i s t he de t e rm i nan t o f
t he cova r i ance ma t r i x .

M i n i m i z i ng X 2 and us i ng t he second de r i va t i ve ca l -
cu l a t ed a t t he m i n i mum we ob t a i n t he bes t va l ue o f k
and i t s e r ror :

The mos t probab l e va l ue o f t he phys i ca l quan t i t y i s
exac t l y wha t one ob t a i ns f rom t he ave r age x we i gh t ed
w i t h t he i nve r se o f t he i nd i v i dua l va r i ances . I t s e r ror i s
t he quadr a t i c sum o f t he e r ror o f t he we i gh t ed ave r age
and t he common one . The r esu l t co i nc i des w i t h t he
s i mp l e expec t a t i on .

Le t x l ± o - 1 and x 2 ± 0 - 2 be t he t wo measur ed va l -
ues , and o f t he common e r ror on t he sca l e . The X 2 i s

whe r e D = o -10 - + ( x2Q2 +X 2 0 ' i )o -t . We ob t a i n i n t h i s
case t he f o l l ow i ng r esu l t :

W i t h r espec t t o t he pr ev i ous case , k has a new t e rm
( x l - x 2 ) 20 - f i n t he denom i na t or . As l ong as t h i s i s
neg l i g i b l e w i t h r espec t t o t he i nd i v i dua l va r i ances we
s t i l l ge t t he t he we i gh t ed ave r age x , o t he rw i se a sma l l e r
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va l ue i s ob t a i ned . Ca l l i ng r t he r a t i o be t ween k and x ,
we ob t a i n

1
r=k / x=

(X I _z z
2

) z1+ U2 + 0 , 2 0 f
1 z

Wr i t t en i n t h i s way , one can see t ha t t he dev i a t i on
f rom t he s i mp l e ave r age va l ue depends on t he compa t i -
b i l i t y o f t he t wo va l ues and on t he norma l i za t i on e r ror .
Th i s can be unde r s t ood i n t he f o l l ow i ng way : as soon
as t he t wo va l ues a r e i n some d i sagr eemen t , t he f i t
s t a r t s t o va r y - i n a h i dden way - t he norma l i za t i on
f ac t or and t o squeeze t he sca l e , by an amoun t a l l owed
by o f , i n orde r t o m i n i m i ze t he X 2 . The advan t age f or
t he f i t t o pr e f e r , unde r t hese cond i t i ons , norma l i za t i on
f ac t or s sma l l e r t han 1 f i nds i t s deep r eason i n t he
s t anda rd f orma l i sm o f t he e r ror propaga t i on , whe r e
on l y f i r s t de r i va t i ves a r e cons i de r ed . Th i s i mp l i es t ha t
t he i nd i v i dua l e r ror s a r e no t r esea l ed by l owe r i ng t he
norma l i za t i on f ac t or , wh i l e t he po i n t s ge t c l ose r .

To see t he sour ce o f t h i s e f f ec t mor e exp l i c i t l y , l e t
us cons i de r an a l t e rna t i ve way o f t en used t o t ake i n t o
accoun t t he norma l i za t i on unce r t a i n t y . A sca l e f ac t or
f , by wh i ch a l l da t a po i n t s a r e mu l t i p l i ed , i s i n t roduced
i n t he expr ess i on o f X2 :

z (. Î X , - k ) 2 (. Î X2 - k )2
( f _ l ) 2

XA
( f Q l ) 2 + ( f o 2) 2 + Q f

Le t us cons i de r a l so t he same expr ess i on when t he
i nd i v i dua l e r ror s a r e no t r esea l ed :

X 2 =
( f x t

z
k ) 2 + ( f x2 a k ) 2 +

( f _2 j )2

.

�

(4)
0 , 1

0 ` 2 o f
The use o f Xn a l ways g i ves t he r esu l t k = x , because
t he t e rm ( f - 1) 2 / Q f i s ha rm l ess #s as f a r as t he va l ue
o f t he m i n i mum X 2 and t he de t e rm i na t i on on k a r e
conce rned . I t s on l y i n f l uence i s on o - ( k ) , wh i ch t urns
ou t t o be equa l t o quadr a t i c comb i na t i on o f t he
we i gh t ed ave r age e r ror w i t h o f x , t he norma l i za t i on
unce r t a i n t y on t he ave r age . Th i s r esu l t cor r esponds t o
t he usua l one , when t he norma l i za t i on f ac t or i n t he
de f i n i t i on o f X 2 i s no t i nc l uded , and t he ove r a l l unce r -
t a i n t y i s added a t t he end .

The use o f Xs i ns t ead i s equ i va l en t t o t he cova r i -
ance ma t r i x : t he same va l ues o f t he m i n i mum X 2 , o f k
and o f 0 - ( k ) a r e ob t a i ned , and f a t t he m i n i mum t urns

#3 A s i mp l e way t o see i t i s t o r ewr i t e Eq . (3) as :

( x l - k / f ) 2 ( z z - k / f ) z ( Î - 1) 2

Q2 +
Qz

+ 0 , 2
1

�

2

�

f

For any f , t he f i r s t t wo t e rms de t e rm i ne t he va l ue o f k ,
and t he t h i rd one cons t r a i ns f t o 1 .

Many exp systematics are highly corre- 
lated. Bias is stronger with more bins



w DISTRIBUTION for B → Dℓν

Belle 2015 consider 4 channels ( ) for each bin. 
Average (red points) usually lower than all central values. Bias? 

Blue points are average of normalised bins. 

Standard fit to Belle15+FNAL+HPQCD: 
Fit to normalised bins Belle15+FNAL+HPQCD: 

B0,+, e, μ

|Vcb | = 40.9(1.2) 10−3

|Vcb | = 41.9(1.2) 10−3 Jung, PG



|Vcb| from B→D*lv 
More complicated: 4 FFs, angular spectra, D* unstable. Present status unclear. 

1. Parametrisations matter and the related uncertainties require careful 
consideration.  Belle 2017 dataset analysed with BGL or CLN leads to 6-8% 
difference in |Vcb|.  Bigi, PG, Schacht, Grinstein, Kobach                                                                                                      
Discard old exp results obtained with CLN and provide data in a parametrisation 
independent way.

2. Despite recent progress, lattice calculations are indecisive. Tension between 
Fermilab/MILC 2021 and HPQCD 2023 results at non-zero recoil and Belle 
untagged 2018 data, while JLQCD preliminary results give a consistent picture. 

3. Problems in Belle 2018 analysis (D’Agostini bias,  4σ tension in the FB 
asymmetry) PG, Jung, Schacht & Bobeth, Bordone, van Dyk, Gubernari, Jung                                                                    
new Belle tagged analysis leads to higher |Vcb|,  Babar 2019 to low |Vcb|, LHCb to 
high |Vcb|. New Belle II untagged analysis presented at Moriond. Data not yet 
available.

μ/e



# 8
Nested Hypothesis Tests or Saturation Constraints

BGLna,nb,nc

BGLna+1,nb,nc

BGLna,nb+1,nc

BGLna,nb,nc+1

Challenge nested fits

Z. Ligeti, D. Robinson, M. Papucci, FB 
[arXiv:1902.09553, PRD100,013005 (2019)] 

Gambino, Jung, Schacht 
[arXiv:1905.08209, PLB] 

Use a nested hypothesis test (NHT)

to determine optimal truncation order

Constrain contributions

from higher order coefficients


using unitarity bounds

N

∑
n=0

|an |2 ≤ 1
N

∑
n=0

( |bn |2 + |cn |2 ) ≤ 1

N

∑
n=0

|an |2

χ2
penalty

1

χ2 → χ2 + χ2
penalty

Test statistics & Decision boundary 

Δχ2 = χ2
N − χ2

N+1

Distributed like a %2-distribution with 1 dof

(Wilk’s theorem)

Δχ2 > 1

e.g.

?

Bernlochner Frascati 2023

Other approaches: Dispersive Matrix Lellouch, Martinelli, Simula, Vittorio 
and similar Bayesian inference method by Flynn, Juttner, Tsang 2303.11285

See also Jung’s talk



UNITARITY CONSTRAINTS and UNCERTAINTY

2 4 6 8

5

10

15

20

25

30

low  extrapolation of FNAL f: our 
method (up to ) vs Dispersive Matrix

In JLQCD case the difference between 
methods is much smaller

q2

z2

In blue the  profile as a function of  without imposing unitarity. In red with minimum 
complying with unitarity. Our  corresponds to  from the absolute minimum. 

Blue points are generated according to FNAL covariance matrix. Red points survive unitarity filtering: 
their distribution is much narrower but the points at its edge correspond to small fluctuations in FNAL 
data. Our  reflect this and are always larger than its standard deviation. The curves at the edge 
of our band are consistent with unitarity and represent  fluctuations in FNAL data 

χ2
min f(q2 =0)

δ± f(0) Δχ2
min = 1

δ± f(0)
∼ 1σ



FERMILAB/MILC CALCULATIONResults: Separate fits and joint fit

Separate fits

1.0 1.1 1.2 1.3 1.4 1.5
0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014
Lattice QCD
Belle untagged
BaBar
Lattice
Belle untagged 
Belle untagged 
BaBar synthetic

Joint fit

1.0 1.1 1.2 1.3 1.4 1.5
0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014
Joint Fit
Lattice QCD
Belle untagged, 
Belle untagged, 
BaBar synthetic

Fit Lattice Exp Lat + Belle Lat + BaBar Lat + Exp
p-Value 0.88 0.037 0.015 0.088 0.002

Alejandro Vaquero (University of Utah) B̄ ! D⇤`⌫̄ at non-zero recoil July 29th, 2021 20 / 25

2105.14019

Results: Separate fits and joint fit

Separate fits Joint fit

Unblinded, final result |Vcb| = 38.47(75)⇥ 10�3

Alejandro Vaquero (University of Utah) B(s) ! D
(⇤)
(s)

`⌫̄ at non-zero recoil April 19th, 2022 15 / 25

Our analysis of same exp+lattice data ( Jung, PG):
 |Vcb|= ( ) using only total rate |Vcb|=  39.4(9) 10−3 χ2

min = 50 42.2+2.8
−1.7 10−3

First lattice
calculation

beyond zero
recoil for this

mode



JLQCD PRELIMINARY RESULTScomparison of FFs

• reasonably consistent
⇔ g @ w ~ 1

• larger error @ larger w ⇔ narrower region of w = [1.00,1,10]  ⇔ [1.00,1.17]

( )f w ( )g w

JLQCD vs Fermilab/MILC

( )1 wF ( )2 wF

13

T. Kaneko @ Barolo workshop 4/2021

Our analysis of same exp (Belle18)+ JLQCD data ( Jung, PG):
  |Vcb|=  ( ) using only total rate |Vcb|=40.7(9) 10−3 χ2

min = 33 40.8+1.8
−2.3 10−3

Kaneko et al 2112.13775



Binned Vcb from Belle’18 data: FNAL/MILC vs JLQCD
Belle'18

FFs: FNAL/MILC

10 20 30 40

0.036

0.038

0.040

0.042

0.044

0.046

0.048

0.050

bin

|V
c
b
|

Belle'18

FFs: JLQCD
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Preliminary fits: V FM
cb = (39.3± 0.9)⇥ 10�3, V JL

cb =
�
40.7+1.0

�0.9

�
⇥ 10�3

14 / 17

M. Jung

Extracting Vcb from each bin, FFs only determined by lattice QCD



NEW HPQCD FFS CALCULATION
16
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FIG. 9. Our lattice-only normalised di↵erential decay rates for B ! D
⇤
`⌫̄, with respect to the angular variables defined

in Fig. 1, are shown as the red bands. We also include binned untagged data for e/µ from Belle [21]. Note the clear di↵erence
in shape, particularly for the di↵erential rate with respect to w. Our tauonic di↵erential decay rates are shown in green.
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Bs ! D�
sµ�̄µ, Binned

LHCb Bs ! D�
sµ�̄µ

FIG. 10. Our normalised di↵erential decay rate for Bs !
D

⇤
s`⌫̄ with respect to w is shown as the blue band. We also

include binned data from LHCb [65]. Here, as for B ! D
⇤,

we see a similar di↵erence in shape between SM theory and
experiment to that seen for Belle B ! D

⇤ data in Fig. 9. The
semitauonic mode is plotted as the green band.
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FIG. 11. |F(w)⌘EWVcb|2, defined via Eq. (37), plotted against
w. Our lattice-only |F(w)|2 is multiplied by Vcb extracted
from the joint theory/experiment fit.

minimisation including all correlations against the mea-
sured bin totals from Belle. Note that throughout this
section we assume no lepton flavour universality (LFU)
violation between the light ` = µ and ` = e modes.

2304.03137

Tension with Belle 2018
data similar to FNAL

Our analysis of same exp (Belle18)+ HPQCD data ( Jung, PG):
  |Vcb|=  using only total rate |Vcb|=40.4(8) 10−3 44.4 ± 1.6 10−3

BGL exp "2 |Vcb|
0001 78 41.0(8)
0101 68 41.2(8)
0111 57 40.8(8)
1111 57 40.8(8)
1121 54 40.6(8)
1222 52 40.6(8)
2222 50 40.4(8)
2232 50 40.4(8)
3333 50 40.4(8)

Belle18+HPQCD

Extrapolation in mh, data cover the whole w region

HPQCD and FNAL are not really compatible: adding 16 FNAL points increases by 35 χ2



New!
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Measurement of Differential Distributions of 
𝐵 → 𝐷∗ℓ𝜈ℓ and Determination of |𝑉𝑐𝑏|

BGL(121)

CLN

Based on the lattice input at zero-recoil:

[Preliminary]

Measured Shapes + External Branching Ratio Input

2301.07529



 untagged (189/fb) 
preliminary [to be submitted to Phys. Rev. D]
B0 → D*−ℓ+ν

Belle II

BGL fit result
BGL truncation order determined by  
Nested Hypothesis Test [Phys. Rev. D100, 013005]

Relative uncertainty (%)

LQCD used only for normalisation at zero recoil ( )w = 1

10

Preliminary

Preliminary

Preliminary

PreliminarySummary of the measurement
• Branching fraction 

 
 

• Value of 


• Lepton flavour universality tests 
 
 
 

|Vcb |

12

Preliminary

Preliminary

Preliminary

C. Schwanda, Moriond ‘23



RESULTS BY BABAR AND LHCb   
Reanalysis of tagged B0 and B+ 
data, unbinned 4 dimensional fit
with simplified BGL and CLN 
About 6000 events
No data provided yet

5

data in the four-dimensional decay rate given by Eq. 1
are performed in two variants, both employing BGL ex-
pansions of the form factors. For the nominal BABAR-only
variant, the negative log likelihood (NLL) is of the non-
extended type, implying that the overall normalization
factor is not imposed. This fit is used to extract the
three form factors in a fashion insulated from systematic
uncertainties related to the normalization, in particular
with the estimation of the Btag yield. To extract |Vcb|,
a second version of the fit is performed, where the inte-
grated rate � is converted to a branching fraction, B, as
� = B/⌧B , where ⌧B is the B-meson lifetime. The latest

HFLAV [19] values of B and ⌧B , for B
0
and B

�
mesons,

are employed as additional Gaussian constraints to the
BABAR-only NLL, and the entire fit is repeated. Second,
at the zero-recoil point, the relation

F1(q
2
max) = (mB �mD

⇤)f(q
2
max) (6)

is used to express a
F1
0 in terms of the remaining BGL

coe�cients in f and F1. Therefore, a
F1
0 is not a free

parameter in the fit, but is derived from the remain-
ing parameters. The small isospin dependence of these
constraints, arising from the di↵erences m

B
+ �m

B
0 and

m
D

⇤0 �m
D

⇤+ , is ignored in the calculation.
BGL expansion coe�cients beyond the linear terms are

essentially unconstrained by our data and allowing them
to vary in the fit produces no statistically significant ef-
fect on the form factor shapes, but results in violations of
the unitarity constraints. Therefore, the BGL expansion
fit is performed withN = 1. The background subtraction
is performed using a background component estimated
from the generic BB simulation sample. To ensure that
a global minimum for the NLL is reached, 1000 instances
of the fits are executed, with uniform sampling on [-1,+1]
for the starting values of the an coe�cients. Among con-
vergent fits, a unique minimum NLL is always found, up
to small variations in the least significant digits in the fit
parameters.

Many sources of systematic uncertainties cancel in
this analysis, since no normalization is required from
the BABAR data sample. Tracking e�ciences in
simulation show no significant dependence on q

2
or

{cos ✓`, cos ✓V ,�}. To account for the resolutions in the
reconstructed kinematic variables, the normalization of
the probablity density function in the fit is performed
using reconstructed variables from the simulation. The
dominant systematic uncertainty comes from the rem-
nant background that can pollute the angular distribu-
tions. To estimate its e↵ect on the fit results, the fit pro-
cedure is repeated excluding the background subtraction
and the di↵erence in the results is taken as the system-
atic uncertainty. For the fit using the HFLAV branching
fractions, the uncertainties in those branching fractions
are taken from HFLAV [19].

Table I summarizes the main results from the BGL

af
0 ⇥ 102 af

1 ⇥ 102 a
F1
1 ⇥ 102 ag

0 ⇥ 102 ag
1 ⇥ 102 |Vcb|⇥ 103

1.29 1.63 0.03 2.74 8.33 38.36
±0.03 ±1.00 ±0.11 ±0.11 ±6.67 ±0.90

TABLE I. The N = 1 BGL expansion results of this analysis,
including systematic uncertainties.
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FIG. 2. Comparison between the BABAR BGL and CLN-
WA [19] form factors, {A1, A2, V }. Also shown is the LCSR
prediction at q2 = 0 [21]. The error bands are depicted by
the dashed curves and include both statistical and systematic
uncertainties.

fits, including |Vcb|. Several checks are performed to
ensure stability of the results. Cross-checks are per-
formed via separate fits to the B

0
and B

�
isospin modes

that have charged and neutral pions for the soft pion
in D

⇤ ! D⇡ [20]. Cross-checks are also performed
for separate fits to the two lepton species. Results are
found to be compatible within the statistical uncertain-
ties and thus no additional uncertainty is quoted from
these checks. The values of |Vcb|⇥10

3
, including only sta-

tistical uncertainties, for the e, µ, B
0
, B

�
separated fits

are 38.59±1.15, 38.24±1.05, 38.03±1.05 and 38.68±1.16,
respectively. The use of t0 = t� in the BGL expansion, as
in Refs. [3, 6, 7] also gives results consistent with Table I.

Figure 2 shows the comparisons with the CLN world
average (CLN-WA) [19] as well as light cone sum rules
(LCSR) at the maximum recoil from Ref. [21]. Phe-
nomenologically, the most important feature in Fig. 2 is
the discrepancy between CLN-WA and BGL at the zero-
recoil limit, where HQET is expected to hold. Numer-
ically, the p-value of the consistency between the CLN-
WA and BABAR BGL results, computed near the zero-
recoil point, is 0.0013. The BGL formalism explicitly
avoids placing any HQET-based connections between the
form factors. The di↵erence could point to non-negligible
corrections that are of higher order in {↵s,⇤/mb,c} [3].
While experimental tests of the validity of HQET-based
form factors have been carried out elsewhere [22], the ra-
tio among the helicity amplitudes obtainable from tagged
B ! D

⇤
`
�
⌫` is a more unambiguous and clean way to

probe HQET.

For |Vcb|, the result obtained here is well below the
value determined from inclusive decays. This is in

No clear BGL(111)/CLN difference but
disagreement with HFLAV CLN ffs
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is required to have invariant mass in the vicinity of the �(1020) resonance. The photon
or the neutral pion emitted along with the D

�
s in the D

⇤�
s decay is not reconstructed.

The value of |Vcb| is determined from the observed yields of B0
s decays normalized to

those of reference B
0 decays after correcting for the relative reconstruction and selection

e�ciencies. The reference decays are chosen to be B
0 ! D

�
µ
+
⌫µ and B

0 ! D
⇤�
µ
+
⌫µ,

where the D� meson is reconstructed in the Cabibbo-suppressed mode D� ! [K+
K

�]�⇡�.
Hereafter the symbol D⇤� refers to the D

⇤(2010)� meson. Signal and reference decays
thus have identical final states and similar kinematic properties. This choice results in a
reference sample of smaller size than that of the signal, but allows suppressing systematic
uncertainties that a↵ect the calculation of the e�ciencies. Using the B

0 decays as a
reference, the determination of |Vcb| needs in input the measured branching fractions
of these decays and the ratio of B0

s - to B
0-meson production fractions. The latter is

measured by LHCb using an independent sample of semileptonic decays with respect to
that exploited in this analysis [22], and it assumes universality of the semileptonic decay
width of b hadrons [23]. The ratios of the branching fractions of signal and reference
decays,

R ⌘ B(B0
s ! D

�
s µ

+
⌫µ)

B(B0 ! D
�
µ
+
⌫µ)

, (1)

R⇤ ⌘ B(B0
s ! D

⇤�
s µ

+
⌫µ)

B(B0 ! D
⇤�
µ
+
⌫µ)

(2)

are also determined from the same analysis. From the measured branching fractions of the
reference decays, the branching fractions of B0

s ! D
�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ decays

are determined for the first time.
This analysis uses either the CLN or the BGL parametrization to model the form factors,

with parameters determined by analyzing the decay rates using a novel method: instead
of approximating q

2, which cannot be determined precisely because of the undetected
neutrino, a variable that can be reconstructed fully from the final-state particles and that
preserves information on the form factors is used. This variable is the component of the
D

�
s momentum perpendicular to the B

0
s flight direction, denoted as p?(D�

s ). The p?(D�
s )

variable is highly correlated with the q
2 value of the B

0
s ! D

�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ

decays, and, to a minor extent, with the helicity angles of the B
0
s ! D

⇤�
s µ

+
⌫µ decay.

When used together with the corrected mass, mcorr, it also helps in determining the
sample composition. The corrected mass is calculated from the mass of the reconstructed
particles, m(D�

s µ
+), and from the momentum of the D

�
s µ

+ system transverse to the B
0
s

flight direction, p?(D�
s µ

+), as

mcorr ⌘
q
m2(D�

s µ
+) + p

2
?(D

�
s µ

+) + p?(D
�
s µ

+). (3)

Signal and background decays accumulate in well-separated regions of the two-dimensional
space spanned by mcorr and p?(D�

s ). A fit to the data distribution in the mcorr vs. p?(D�
s )

plane identifies the B
0
s ! D

�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ signal decays and simultaneously

provides a measurement of |Vcb| and of the form factors.
The paper is structured as follows. The formalism describing the semileptonic B

0
(s)

decays and the parametrization of their form factors is outlined in Sec. 2. Section 3 gives
a brief description of the LHCb detector and of the simulation software. The selection

2

Vcb=0.0414(16)      CLN       
Vcb=0.0423(17)   BGL(222) 

Fit to exp data and lattice FFs 
based on HFLAV BRs, employs BGL(222)
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SUMMARY
Despite many new theoretical and exp results, the Vcb puzzle persists. 
However, the level of activity gives hope. 

Inclusive : new 3loop calculations show pert effects under control, 1.2% 
accuracy on |Vcb|

New method to study inclusive semileptonic meson decays on the lattice. 
Exploratory calculations for  in good agreement with OPE. 
Promising way to complement/validate the OPE, but still a long way to go

Exclusive : uncertainties have been underestimated; several lattice groups 
are computing necessary FFs at non-zero recoil and new exp analyses are 
under way but the situation is still unclear.  FNAL & HPQCD in tension with 
exp spectra, JLQCD gives a more consistent picture with reduced tension 
with inclusive.  

b → c

mb ∼ 2.5GeV

b → c


