Constraints for hadronic matrix elements in rare \boldsymbol{B} decays

Nico Gubernari

Based on
arXiv:2011.09813, 2206.03797, 23xx.xxxxx
in collaboration with
Danny van Dyk, Javier Virto, and Méril Reboud

Beyond the Flavour Anomalies IV
Casa Convalescencia, Barcelona
19-April-2023

Particle Physics Phenomenology after the Higgs Discovery

Theoretical framework

$b \rightarrow s \ell^{+} \ell^{-}$effective Hamiltonian

transitions described by the effective Hamiltonian

$$
\mathcal{H}\left(b \rightarrow s \ell^{+} \ell^{-}\right)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} C_{i}(\mu) O_{i}(\mu) \quad \mu=m_{b}
$$

main contributions to $B_{(s)} \rightarrow\left\{K^{(*)}, \phi\right\} \ell^{+} \ell^{-}$in the SM given by local operators O_{7}, O_{9}, O_{10}

$$
O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \quad O_{9}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma_{\mu} \ell\right) \quad O_{10}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right)
$$

Charm loop in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$

additional non-local contributions come from O_{1}^{c} and O_{2}^{c} combined with the e.m. current (charm-loop contribution)

$$
O_{1}^{c}=\left(\bar{s}_{L} \gamma^{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right) \quad O_{2}^{c}=\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{i}\right)\left(\bar{c}_{L}^{i} \gamma_{\mu} b_{L}^{j}\right)
$$

Decay amplitude for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

calculate decay amplitudes precisely to probe the SM
$b \rightarrow s \mu^{+} \mu^{-}$anomalies: NP or underestimated systematic uncertainties?
(analogous formulas apply to $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$decays)

$$
\mathcal{A}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)=\mathcal{N}\left[\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}-\frac{L_{V}^{\mu}}{q^{2}}\left(C_{7} \mathcal{F}_{T, \mu}+\mathcal{H}_{\mu}\right)\right]
$$

Decay amplitude for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

calculate decay amplitudes precisely to probe the SM
$b \rightarrow s \mu^{+} \mu^{-}$anomalies: NP or underestimated systematic uncertainties?
(analogous formulas apply to $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$decays)

$$
\mathcal{A}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)=\mathcal{N}\left[\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}-\frac{L_{V}^{\mu}}{q^{2}}\left(C_{7} \mathcal{F}_{T, \mu}+\mathcal{H}_{\mu}\right)\right]
$$

local hadronic matrix elements

$$
\mathcal{F}_{\mu}=\left\langle K^{(*)}(k)\right| O_{7,9,10}^{\mathrm{had}}|B(k+q)\rangle
$$

non-local hadronic matrix elements

$$
\mathcal{H}_{\mu}=i \int d^{4} x e^{i q \cdot x}\left\langle K^{(*)}(k)\right| T\left\{j_{\mu}^{\mathrm{em}}(x),\left(C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right)(0)\right\}|B(k+q)\rangle
$$

goal of this talk: study and combine model independent constraints for hadronic matrix elements

Form factors definitions

form factors (FFs) parametrize hadronic matrix elements
FFs are functions of the momentum transfer squared q^{2}
local FFs

$$
\mathcal{F}_{\mu}(k, q)=\sum_{\lambda} \mathcal{S}_{\mu}^{\lambda}(k, q) \mathcal{F}_{\lambda}\left(q^{2}\right)
$$

computed with lattice QCD and light-cone sum rules with good precision 3\% - 20\%
non-local FFs

$$
\mathcal{H}_{\mu}(k, q)=\sum_{\lambda} \mathcal{S}_{\mu}^{\lambda}(k, q) \mathcal{H}_{\lambda}\left(q^{2}\right)
$$

calculated using an Operator Product Expansion (OPE) or QCD factorization or ... (variety of approaches, most of them model-dependent)
large uncertainties \rightarrow reduce uncertainties for a better understanding of rare B decays

Local form factors

Methods to compute FFs

non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)
numerical evaluation of correlators in a finite and discrete space-time more efficient usually at high q^{2} reducible systematic uncertainties

Methods to compute FFs

non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)
numerical evaluation of correlators in a finite and discrete space-time more efficient usually at high q^{2} reducible systematic uncertainties
2. Light-cone sum rules (LCSRs)
based on unitarity, analyticity, and quark-hadron duality approximation need universal non-perturbative inputs (light-meson or B-meson distribution amplitudes) only applicable at low q^{2} non-reducible systematic uncertainties

Methods to compute FFs

non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)
numerical evaluation of correlators in a finite and discrete space-time more efficient usually at high q^{2}
reducible systematic uncertainties
2. Light-cone sum rules (LCSRs)
based on unitarity, analyticity, and quark-hadron duality approximation need universal non-perturbative inputs (light-meson or B-meson distribution amplitudes) only applicable at low q^{2} non-reducible systematic uncertainties
complementary approaches to calculate FFs
in the long run LQCD will dominate the theoretical predictions (smaller and reducible syst unc.)

Local form factors predictions

available theory calculations for local FFs \mathcal{F}_{λ}

$$
B \rightarrow K:
$$

- LQCD calculations at high q^{2}
[HPQCD 2013/2023] [FNAL/MLLC 2015]
and in the whole semileptonic region
[HPQCD 2023] (see Will's talk)
- LCSR at low q^{2}
$B \rightarrow K^{*}$ and $B_{s} \rightarrow \phi$:
- LQCD calculations at high q^{2}
[Horgan et al. 2015]
- LCSR calculation at low q^{2}
[Bharucha et al. 2015] [NG/Kokulu/van Dyk 2018]

Local form factors predictions

available theory calculations for local FFs $\mathcal{F}_{\boldsymbol{\lambda}}$

$B \rightarrow K$:

- LQCD calculations at high q^{2}
[HPQCD 2013/2023] [FNAL/MILC 2015]
and in the whole semileptonic region
[HPQCD 2023] (see Will's talk)
- LCSR at low q^{2}
[Khodjamirian/Rusov 2017] [NG/Kokulu/van Dyk 2018]
$B \rightarrow K^{*}$ and $B_{s} \rightarrow \phi:$
- LQCD calculations at high q^{2}
[Horgan et al. 2015]
- LCSR calculation at low q^{2}
[Bharucha et al. 2015] [NG/Kokulu/van Dyk 2018]
$B \rightarrow K$ FFs excellent status (need independent calculation at low q^{2})
more LQCD results needed for vector states (for high precision K^{*} width cannot be neglected)
how to combine different calculations for the same channel?
how to obtain result in the whole semileptonic region if not available from LQCD?

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

obtain local $\operatorname{FFs} \mathcal{F}_{\boldsymbol{\lambda}}$ in the whole semileptonic region by either

- extrapolating LQCD calculations to low q^{2}
- or combining LQCD and LCSRs

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

obtain local $\operatorname{FFs} \mathcal{F}_{\boldsymbol{\lambda}}$ in the whole semileptonic region by either

- extrapolating LQCD calculations to low q^{2}
- or combining LQCD and LCSRs
$\mathcal{F}_{\mathcal{\lambda}}$ analytic functions of q^{2} except for isolated $s \bar{b}$ poles
and a branch cut for $q^{2}>t_{\Gamma}=\left(M_{B_{s}}+(2) M_{\pi}\right)^{2}$
branch cut differs from the pair production threshold:
$t_{\Gamma} \neq t_{+}=\left(M_{B}+M_{K^{(*)}}\right)^{2}$ contrary to, e.g., $B \rightarrow \pi$

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

obtain local $F F s \mathcal{F}_{\boldsymbol{\lambda}}$ in the whole semileptonic region by either

- extrapolating LQCD calculations to low q^{2}
- or combining LQCD and LCSRs
$\mathcal{F}_{\boldsymbol{\lambda}}$ analytic functions of q^{2} except for isolated $s \bar{b}$ poles
and a branch cut for $q^{2}>t_{\Gamma}=\left(M_{B_{s}}+(2) M_{\pi}\right)^{2}$
branch cut differs from the pair production threshold:
$t_{\Gamma} \neq t_{+}=\left(M_{B}+M_{K^{(*)}}\right)^{2}$ contrary to, e.g., $B \rightarrow \pi$
define the map

$$
z\left(q^{2}\right)=\frac{\sqrt{t_{\Gamma}-q^{2}}-\sqrt{t_{\Gamma}}}{\sqrt{t_{\Gamma}-q^{2}}+\sqrt{t_{\Gamma}}}
$$

previous works on $B \rightarrow K^{(*)}$ local FFs always approximated $t_{\Gamma}=t_{+}$ non-quantifiable systematic uncertainties (see Javier's talk)

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

\mathcal{F}_{λ} analytic in the open unit disk $\Rightarrow \operatorname{expand} \mathcal{F}_{\boldsymbol{\lambda}}$ in a Taylor series in \boldsymbol{z} (up to some known function)

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

\mathcal{F}_{λ} analytic in the open unit disk \Rightarrow expand \mathcal{F}_{λ} in a Taylor series in \mathbf{z} (up to some known function) naïve (BSZ) z parametrization \Rightarrow unbounded coefficients [Bharucha/Straub/Zwicky 2015]

$$
\mathcal{F}_{\lambda}=\frac{1}{1-\frac{q^{2}}{M_{\mathcal{F}}^{2}}} \sum_{k=0}^{\infty} a_{k} z^{k}
$$

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

\mathcal{F}_{λ} analytic in the open unit disk $\Rightarrow \operatorname{expand} \mathcal{F}_{\lambda}$ in a Taylor series in \mathbf{z} (up to some known function) naïve (BSZ) z parametrization \Rightarrow unbounded coefficients [Bharucha/Straub/Zwicky 2015]

$$
\mathcal{F}_{\lambda}=\frac{1}{1-\frac{q^{2}}{M_{\mathcal{F}}^{2}}} \sum_{k=0}^{\infty} a_{k} z^{k}
$$

BGL parametrization \Rightarrow valid only if $t_{\Gamma}=t_{+}$, monomials orthonormal on the unit circle

$$
\mathcal{F}_{\lambda}=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{\infty} b_{k} z^{k} \quad \sum_{k=0}^{\infty}\left|b_{k}\right|^{2}<1
$$

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

$\mathcal{F}_{\boldsymbol{\lambda}}$ analytic in the open unit disk $\Rightarrow \operatorname{expand} \mathcal{F}_{\boldsymbol{\lambda}}$ in a Taylor series in \mathbf{z} (up to some known function) naïve (BSZ) z parametrization \Rightarrow unbounded coefficients [Bharucha/Straub/Zwicky 2015]

$$
\mathcal{F}_{\lambda}=\frac{1}{1-\frac{q^{2}}{M_{\mathcal{F}}^{2}}} \sum_{k=0}^{\infty} a_{k} z^{k}
$$

BGL parametrization \Rightarrow valid only if $t_{\Gamma}=t_{+}$, monomials orthonormal on the unit circle

$$
\mathcal{F}_{\lambda}=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{\infty} b_{k} z^{k} \quad \sum_{k=0}^{\infty}\left|b_{k}\right|^{2}<1
$$

GvDV parametrization \Rightarrow valid also for $t_{\Gamma} \neq t_{+}$, generalization of BGL , polynomials orthonormal on the arc of the unit circle (alternative implementation of this parametrization in Flynn/Jüttner/Tsang 2023)

$$
\mathcal{F}_{\lambda}=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{\infty} c_{k} p_{k}(z) \quad \sum_{k=0}^{\infty}\left|c_{k}\right|^{2}<1
$$

[NG/van Dyk/Nirto 2020]
fit this parametrization to LQCD (and LCSR) results and use new improved bounds in Javier's talk

Non-local form factors

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local FFs \mathcal{H}_{λ} using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local FFs \mathcal{H}_{λ} using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

leading power (LO in α_{s})

+ hard gluons $\left(\alpha_{s}\right)$ corrections

[Bell/Huber 2014] [Asatrian/Greub/Virto 2019]

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local FFs \mathcal{H}_{λ} using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

leading power (LO in α_{s})

+ hard gluons $\left(\alpha_{s}\right)$ corrections

[Khodjamirian et al. 2010]
[NG/van Dyk/Virto 2020]

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local FFs \mathcal{H}_{λ} using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

2. extract \mathcal{H}_{λ} at $q^{2}=m_{J / \psi}^{2}$ from $B \rightarrow K^{(*)} J / \psi$ and $B_{s} \rightarrow \phi J / \psi$ measurements (decay amplitudes independent of the local FFs)

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local $\mathrm{FFs} \mathcal{H}_{\lambda}$ using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

2. extract \mathcal{H}_{λ} at $q^{2}=m_{J / \psi}^{2}$ from $B \rightarrow K^{(*)} J / \psi$ and $B_{s} \rightarrow \phi J / \psi$ measurements (decay amplitudes independent of the local FFs)
3. new approach: interpolate these two results to obtain theoretical predictions in the low $q^{2}\left(0<q^{2}<8 \mathrm{GeV}^{2}\right)$ region \Rightarrow compare with experimental data

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local $\mathrm{FFs} \mathcal{H}_{\lambda}$ using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

2. extract \mathcal{H}_{λ} at $q^{2}=m_{J / \psi}^{2}$ from $B \rightarrow K^{(*)} J / \psi$ and $B_{s} \rightarrow \phi J / \psi$ measurements (decay amplitudes independent of the local FFs)
3. new approach: interpolate these two results to obtain theoretical predictions in the low $q^{2}\left(0<q^{2}<8 \mathrm{GeV}^{2}\right)$ region \Rightarrow compare with experimental data
need a parametrization to interpolate \mathcal{H}_{λ} : which is the optimal parametrization?

Dispersive bound for \mathcal{H}_{λ}

similar situation with respect to $\mathcal{F}_{\boldsymbol{\lambda}}$
\mathcal{H}_{λ} analytic functions of q^{2} except for isolated $c \bar{c}$ poles $(J / \psi$ and $\psi(2 S))$ and a branch cut for $q^{2}>\hat{t}_{\Gamma}=4 M_{D}^{2}$
branch cut differs from the pair production threshold:
$t_{\Gamma} \neq t_{+}=\left(M_{B}+M_{K^{(*)}}\right)^{2}$

Dispersive bound for \mathcal{H}_{λ}

similar situation with respect to $\mathcal{F}_{\boldsymbol{\lambda}}$
\mathcal{H}_{λ} analytic functions of q^{2} except for isolated $c \bar{c}$ poles $(J / \psi$ and $\psi(2 S))$ and a branch cut for $q^{2}>\hat{t}_{\Gamma}=4 M_{D}^{2}$
branch cut differs from the pair production threshold:
$t_{\Gamma} \neq t_{+}=\left(M_{B}+M_{K^{(*)}}\right)^{2}$
define the map

$$
\hat{z}\left(q^{2}\right)=\frac{\sqrt{\hat{t}_{\Gamma}-q^{2}}-\sqrt{\hat{t}_{\Gamma}}}{\sqrt{\hat{t}_{\Gamma}-q^{2}}+\sqrt{\hat{t}_{\Gamma}}}
$$

only difference between $\mathcal{F}_{\boldsymbol{\lambda}}$ and $\mathcal{H}_{\boldsymbol{\lambda}}$ is the threshold \hat{t}_{Γ} and the poles due to more complicate structure of the operator

Parametrizations for $\mathcal{H}_{\boldsymbol{\lambda}}$

naïve q^{2} parametrization [Jäger/Camalich 2012, Ciuchini et al. 2015]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}^{\mathrm{QCDF}}\left(q^{2}\right)+\mathcal{H}_{\lambda}^{\text {rest }}(0)+\frac{q^{2}}{M_{B}^{2}} \mathcal{H}_{\lambda}^{\text {rest,' }}(0)+\frac{\left(q^{2}\right)^{2}}{M_{B}^{4}} \mathcal{H}_{\lambda}^{\text {rest,/" }}(0)+\cdots
$$

dispersion relation [Khodjamirian et al. 2010]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}(0)+\sum_{\psi=J / \psi, \psi(2 S)} \frac{f_{\psi} \mathcal{A}_{\psi}}{M_{\psi}^{2}\left(M_{\psi}^{2}-q^{2}\right)}+\int_{4 M_{D}^{2}}^{\infty} d t \frac{\rho(t)}{t\left(t-q^{2}\right)}
$$

naïve z parametrization [Bobeth/Chrzaszcz/van Dyk/Virto 2017]

$$
\mathcal{H}_{\lambda}(z) \propto \sum_{k=0}^{\infty} c_{k} z^{k}
$$

Parametrizations for \mathcal{H}_{λ}

naïve q^{2} parametrization [Jäger/Camalich 2012, Ciuchini et al. 2015]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}^{\mathrm{QCDF}}\left(q^{2}\right)+\mathcal{H}_{\lambda}^{\text {rest }}(0)+\frac{q^{2}}{M_{B}^{2}} \mathcal{H}_{\lambda}^{\text {rest,' }}(0)+\frac{\left(q^{2}\right)^{2}}{M_{B}^{4}} \mathcal{H}_{\lambda}^{\text {rest,/" }}(0)+\cdots
$$

dispersion relation [Khodjamirian et al. 2010]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}(0)+\sum_{\psi=J / \psi, \psi(2 S)} \frac{f_{\psi} \mathcal{A}_{\psi}}{M_{\psi}^{2}\left(M_{\psi}^{2}-q^{2}\right)}+\int_{4 M_{D}^{2}}^{\infty} d t \frac{\rho(t)}{t\left(t-q^{2}\right)}
$$

naïve z parametrization [Bobeth/Chrzaszcz/van Dyk/Virto 2017]

$$
\mathcal{H}_{\lambda}(z) \propto \sum_{k=0}^{\infty} c_{k} z^{k}
$$

GvDV parametrization \Rightarrow new (bounded) parametrization, \hat{z} polynomials [NG/van Dyk/Virto 2020]

$$
\mathcal{H}_{\lambda}(\hat{z})=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{\infty} c_{k} p_{k}(\hat{z}) \quad \sum_{k=0}^{\infty}\left|c_{k}\right|^{2}<1
$$

fit this parametrization to OPE result and $B \rightarrow K^{(*)} J / \psi$ data in Javier's talk

Derivation of the bound

define the correlator

$$
\Pi(k, q)=i \int \mathrm{~d}^{4} x e^{i k x}\langle 0| T\left\{\mathcal{O}^{\mu}(x), \mathcal{O}_{\mu}(y)\right\}|0\rangle
$$

where

$$
\mathcal{O}_{\mu} \propto \int d^{4} x e^{i q \cdot x} T\left\{j_{\mu}^{e m}(x),\left(C_{1} O_{1}+C_{2} O_{2}\right)(0)\right\}
$$

use a subtracted dispersion relation

$$
\chi(s) \equiv \frac{1}{2}\left(\frac{d}{d s}\right)^{2} \Pi(s) \propto \int_{t_{+}}^{\infty} d q^{2} \frac{\operatorname{Disc}_{b s} \Pi\left(q^{2}\right)}{\left(q^{2}-s\right)^{3}}
$$

calculate χ perturbatively and $\operatorname{Disc}_{b s} \Pi$ using unitarity

Derivation of the bound

calculate 3 -loop diagrams to obtain $\chi^{\text {OPE }}$

Derivation of the bound

calculate 3-loop diagrams to obtain $\chi^{\text {OPE }}$

simplify calculation by using the local OPE for $\left|q^{2}\right| \gtrsim m_{b}^{2}$ (including α_{s} corrections) we obtain at $s=-m_{b}^{2}$

$$
\chi^{\mathrm{OPE}}\left(-m_{b}^{2}\right)=(1.81 \pm 0.02) \cdot 10^{-4} \mathrm{GeV}^{-2}
$$

Derivation of the bound

calculate 3-loop diagrams to obtain $\chi^{\text {OPE }}$

simplify calculation by using the local OPE for $\left|q^{2}\right| \gtrsim m_{b}^{2}$ (including α_{s} corrections) we obtain at $s=-m_{b}^{2}$

$$
\chi^{\mathrm{OPE}}\left(-m_{b}^{2}\right)=(1.81 \pm 0.02) \cdot 10^{-4} \mathrm{GeV}^{-2}
$$

apply \hat{z} mapping, expansion $\mathcal{H}_{\lambda}(\hat{z}) \propto \sum_{k} c_{k} p_{k}$ to recast the bound in a simple form

$$
\chi^{\mathrm{OPE}}(s) \equiv \frac{1}{2}\left(\frac{d}{d s}\right)^{2} \Pi(s) \propto \int_{t_{+}}^{\infty} d q^{2} \frac{\operatorname{Disc}_{b s} \Pi\left(q^{2}\right)}{\left(q^{2}-s\right)^{3}} \quad \Rightarrow \quad \sum_{k=0}^{\infty}\left|c_{k}\right|^{2}<1
$$

first dispersive bound for non-local FFs = model independent constraints

Missing something?

Ciuchini et al. 2022 (also way before) claim that $B \rightarrow \bar{D} D_{s} \rightarrow K^{(*)} \ell^{+} \ell^{-}$rescattering might have a sizable contribution $O(20 \%)$
is a mesonic estimate the best way to go? (many states contributing, interferences even harder to compute)
partonic calculation doesn't yield large contribution (LP OPE and NLO α_{s}) [Asatrian/Greub/Virto 2019]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

C_{λ} is complex valued for any q^{2} value due to branch cut in $p^{2}=M_{B}^{2}$ as expected
large duality violations? large NLP OPE or α_{s}^{2} corrections? spectator scattering?

Summary and conclusion

Summary and conclusion

1. reassess $B G L$ parametrization for local $F F s \mathcal{F}_{\boldsymbol{\lambda}}$ to consider below threshold branch cut and obtain more constraining dispersive bound
combine theory inputs in new dispersive analysis of the local FFs $\mathcal{F}_{\boldsymbol{\lambda}}$ [see Javier's talk]

Summary and conclusion

1. reassess $B G L$ parametrization for local $F F s \mathcal{F}_{\boldsymbol{\lambda}}$ to consider below threshold branch cut and obtain more constraining dispersive bound
combine theory inputs in new dispersive analysis of the local FFs $\boldsymbol{\mathcal { F }}_{\boldsymbol{\lambda}}$ [see Javier's talk]
2. new approach for non-local FFs \mathcal{H}_{λ} that combines our OPE calculation at $q^{2}<0$, experimental data for $B \rightarrow K^{(*)} J / \psi$, and a dispersive bound
first dispersive bound for non-local FFs = model independent constraints
dispersive bound allows to control truncation error
\mathcal{H}_{λ} uncertainties can be systematically reduced [see Javier's talk]
major issue for \mathcal{H}_{λ} is $B \rightarrow \bar{D} D_{s} \rightarrow K^{(*)} \ell^{+} \ell^{-}$rescattering
w.i.p. different groups but no complete estimate yet

Thank you!

