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Theoretical framework



b — sfT ¥~ effective Hamiltonian

transitions described by the effective Hamiltonian
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Charm loop in B - K¢+ ¢~

additional non-local contributions come from 0f and 05 combined with the e.m. current
(charm-loop contribution)

0f = (5,7*c,)(ELvuby) 0§ = (§£Y”C£)(5Li)’ubi)




Decay amplitude for B » K ¢+¢~ decays

calculate decay amplitudes precisely to probe the SM
b — sutu~ anomalies: NP or underestimated systematic uncertainties?
(analogous formulas apply to B = ¢p£7£~ decays)

L,u
A(B > K®ete™) = [(CgL‘; + CyoLy) T, — q—g (C; Frp,+ }(M)]



Decay amplitude for B » K ¢+¢~ decays

calculate decay amplitudes precisely to probe the SM
b — sutu~ anomalies: NP or underestimated systematic uncertainties?
(analogous formulas apply to B = ¢p£7£~ decays)

A(B > K®ete™) = [(CgL‘; + C1oLYy) Fu— 2—% (C; Frp,+ }[M)]
local hadronic matrix elements
Fu= (KW ()| 07550|B(k + )
non-local hadronic matrix elements

Hy= i f d*x e' (K™ ()| T{je™ (x), (C,0f + C,05)(0)}|B(k + q))

goal of this talk: study and combine model independent constraints for hadronic matrix elements



Form factors definitions

form factors (FFs) parametrize hadronic matrix elements
FFs are functions of the momentum transfer squared g2

local FFs
Fule,q) = ) SE(k, @) F2(?)
A

computed with lattice QCD and light-cone sum rules with good precision 3% — 20%

non-local FFs
Hale,q) = ) SHk,@)3,(a)
A

calculated using an Operator Product Expansion (OPE) or QCD factorization or ...
(variety of approaches, most of them model-dependent)

large uncertainties — reduce uncertainties for a better understanding of rare B decays



L ocal form factors



Methods to compute FFs

non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)
numerical evaluation of correlators in a finite and discrete space-time
more efficient usually at high g?
reducible systematic uncertainties
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Methods to compute FFs

non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)
numerical evaluation of correlators in a finite and discrete space-time
more efficient usually at high g?
reducible systematic uncertainties

2. Light-cone sum rules (LCSRs)
based on unitarity, analyticity, and quark-hadron duality approximation
need universal non-perturbative inputs (light-meson or B-meson distribution amplitudes)
only applicable at low g2
non-reducible systematic uncertainties

complementary approaches to calculate FFs
in the long run LQCD will dominate the theoretical predictions (smaller and reducible syst unc.)



Local form factors predictions

available theory calculations for local FFs F,

B-K: | . B—-K"and B; —» ¢
« LQCD calculations at high g*
« LQCD calculations at high g*

and in the whole semileptonic region

« LCSR calculation at low g?
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Local form factors predictions

available theory calculations for local FFs F,

B-K: | . B—-K"and B; —» ¢
« LQCD calculations at high g*
« LQCD calculations at high g*

and in the whole semileptonic region

« LCSR calculation at low g?
« LCSR at low g?

B — K FFs excellent status (need independent calculation at low g2 )

more LQCD results needed for vector states (for high precision K* width cannot be neglected)

how to combine different calculations for the same channel?
how to obtain result in the whole semileptonic region if not available from LQCD?



Parametrization for F,

obtain local FFs F; in the by either
«  extrapolating LQCD calculations to low g

« or combining LQCD and LCSRs
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Parametrization for Fy

obtain local FFs F; in the by either
«  extrapolating LQCD calculations to low g

« or combining LQCD and LCSRs

F, analytic functions of g2 except for isolated sh

and a for % >t = (Mp, + (Z)Mﬂ)2

branch cut differs from the pair production threshold:
tr # t, = (Mg + MK(*))Z contrary to, e.g, B > 1

define the map

Vtr —q* — [t
Vitr —q% + . /tr

orevious works on B = K™ local FFs always approximated ¢, = t,
non-quantifiable systematic uncertainties (see Javier's talk)

z(q*) =
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Parametrization for F,

F, analytic in the open unit disk = expand F; in a Taylor series in z (up to some known function)
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Parametrization for Fy

F, analytic in the open unit disk = expand F; in a Taylor series in z (up to some known function)

naive (BSZ) z parametrization = unbounded coefficients

1 k
le > ak Z
- =
Mz
BGL parametrization = valid only if ¢ = t,, monomials orthonormal on the unit circle
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Parametrization for F, :

F, analytic in the open unit disk = expand F; in a Taylor series in z (up to some known function)

naive (BSZ) z parametrization = unbounded coefficients

1 k
le qz ak Z
— 2, k=0
Mz
BGL parametrization = valid only if ¢ = t,, monomials orthonormal on the unit circle
Fy= ! ibkzk i:lbkl2 <1
PRP7) L L

GvDV parametrization = valid also for ¢ # t,, generalization of BGL, polynomials orthonormal on the
arc of the unit circle (alternative implementation of this parametrization in Flynn/Jattner/Tsang 2023)

(00)

1 (00]
T P De@ ,;C"p"(z) D <1

k=0

fit this parametrization to LQCD (and LCSR) results and use new improved bounds in Javier’s talk



Non-local form factors



Obtaining theoretical predictions for H;

1. compute the non-local FFs 7, using a light-cone OPE at negative g°

H;(q%) = Cu(g)F (@D + Ci(a)Vy(q7) + -



Obtaining theoretical predictions for H;
1. compute the non-local FFs H; using a light-cone OPE at negative g°
H;(q?) = G@)F(@*) + Ci(q*)Vi(q7) + -

leading power (LO in ay)

QMM

+ hard gluons (ag) corrections

A o @W

[Bell/Huber 2014] [Asatrian/Greub/Virto 2019]




Obtaining theoretical predictions for H; 9

1. compute the non-local FFs H; using a light-cone OPE at negative ¢*
}[A(qz) = C;L(qz)T/l(qZ) + C"A(qz)v)l(qz) 4 ...

leading power (LO in ay) Sor]:toﬂl—upoer;tfjcr)tr)ﬁc?\fn
QW = not a, suppressed

+ hard gluons (ag) corrections

A o @W

-«

[Bell/Huber 2014] [Asatrian/Greub/Virto 2019]

[Khodjamirian et al. 2010]
ING/van Dyk/Virto 2020]
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2. extract H; at from B = K®J /iy and B, = ¢ J /Y measurements
(decay amplitudes independent of the local FFs)
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Obtaining theoretical predictions for H;

1. compute the non-local FFs H; using a light-cone OPE at negative ¢°
7,(q%) = C1(q®)F(q2) + C (g V,(g?) + -

2. extract H; at from B = K®J /iy and B, = ¢ J /Y measurements
(decay amplitudes independent of the local FFs)

3. new approach: interpolate these two results to obtain theoretical predictions
in the region = compare with experimental data

need a parametrization to interpolate #,: which is the optimal parametrization?

4>

light-cone OPE g> =0



Dispersive bound for H; 10

Im ¢*}
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branch cut differs from the pair production threshold:
2
tr # ty = (Mg + M )



Dispersive bound for H; 10

2

r

Img

similar situation with respect to F,

H, analytic functions of q# except for isolated c¢ (J/W and Y (25)) —HH e GG
and a for g2 > i = 4M} Reg

branch cut differs from the pair production threshold:
2
tr # ty = (Mg + M »)

define the map
N
= 2 el ey 3

only difference between F; and H; is the threshold ¢ and the poles
due to more complicate structure of the operator

2(q%) =




Parametrizations for H,

naive g% parametrization

qZ

H,(q%) = H, 2T (q2) + HFSH(0) + A °st(0)
B
dispersion relation
JyAy
H(@) =30+ )
M (Mg — q?)

Y=J/Yp(2S)

naive z parametrization

co

}[A(Z) X z Cka

k=0

11



Parametrizations for H,

naive g% parametrization

2
q
Hy(a?) =377 (@%) + HH(0) +

B

j_[/{est,’ (O)

dispersion relation

fpAy
@) =1+ ) it
p=yfoapczs) W\ 4

naive z parametrization

co

}[A(Z) X z Cka

k=0

GvDV parametrization = new (bounded) parametrization, Z polynom|a|s

H,(2) = ?(Z)d)(z) Z CkPr(2) IZ;|C1{|2 <1

fit this parametrization to OPE result and B — K )] /3 data in Javier’s talk

11



Derivation of the bound

define the correlator

N(k,q) =i j d*x e™®*(0|T{0* (x), 0, (¥)}|0)

Img? 4
where

0, x f d*x e'1* T{je™(x), (C,01 + C,0,)(0)}

use a subtracted dispersion relation

x(s)

f"o 102 DiscyI1(g?)
t (CIZ —5)3

+

calculate y perturbatively and Disc,,I1 using unitarity

x calculation very involved while latter is trivial Discy¢I1 o |H; |
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Derivation of the bound

calculate 3-loop diagrams to obtain y°F"

OOO-L N <

13
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calculate 3-loop diagrams to obtain y°FE

simplify calculation by usmg the local OPE for |q?| 2 m% (including a corrections)
we obtain at s = —m;,

xOPE(—mf) = (1.81 £ 0.02) - 10™*GeV 2



Derivation of the bound 13
calculate 3-loop diagrams to obtain y°FE

simplify calculation by usmg the local OPE for |q?| 2 m% (including a corrections)
we obtain at s = —m;,

xOPE(—mf) = (1.81 £ 0.02) - 10™*GeV 2

apply Z mapping, expansion H;(2) « Y., cxpi 0 recast the bound in a simple form

* Disc,I1(g? =
¥OPE(s) f dg? st (qB) — Z|Ck|2 <1
t. (g% —s) =

first dispersive bound for non-local FFs = model independent constraints



Missing something? 14

Ciuchini et al. 2022 (also way before) claim that B = DDg — K™£+£~ rescattering might have
a sizable contribution 0(20%)

IS a mesonic estimate the best way to go? (many states contributing, interferences even
harder to compute)

partonic calculation doesn't yield large contribution (LP OPE and NLO ag)
Hy(q%) = C1(q*)F(a®) + Ci(a*)V(q?) + -
C, is complex valued for any g2 value due to branch cut in p? = M3 as expected

large duality violations? large NLP OPE or a2 corrections? spectator scattering?



Summary and conclusion



1.

Summary and conclusion

reassess BGL parametrization for local FFs F; to consider below threshold branch cut
and obtain more constraining dispersive bound

combine theory inputs in new dispersive analysis of the local FFs F; [see Javier's talk]
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Summary and conclusion

reassess BGL parametrization for local FFs F; to consider below threshold branch cut
and obtain more constraining dispersive bound

combine theory inputs in new dispersive analysis of the local FFs F; [see Javier's talk]

new approach for non-local FFs H, that combines our OPE calculation at g < 0,
experimental data for B — K®J /1, and a dispersive bound

first dispersive bound for non-local FFs = model independent constraints
dispersive bound allows to control truncation error
H; uncertainties can be systematically reduced [see Javier’s talk]

major issue for H;, is B — DDy — K™£+¢~ rescattering
w.i.p. different groups but no complete estimate yet

15



Thank you!
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