
Unbinned measurements
for new physics

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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4Motivation I: Inference-aware binning

Current paradigm 

Chose binning based on 
heuristic (e.g. purity > 50%)

Perform many down-stream 
analyses using this binning

Do the measurement and 
publish results
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Chose binning based on 
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analyses using this binning

Do the measurement and 
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For a given analysis, pick the 
optimal choice of bins
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Repeat for many analyses



6Motivation I: Inference-aware binning

Current paradigm Unbinned

Chose binning based on 
heuristic (e.g. purity > 50%)

Related: makes comparison with other experiments much easier 
… do not need to coordinate on binning ahead of time!

Perform many down-stream 
analyses using this binning

Do the measurement and 
publish results

For a given analysis, pick the 
optimal choice of bins

Do the measurement and 
publish results

Repeat for many analyses



7Motivation II: Derivative Measurements

Say you measure the observables x, 
but you later want to measure f(x).

If the original measurement is binned, 
then you can only make a crude 

approximation of f using bin centers.



8Motivation II: Derivative Measurements

Say you measure the observables x, 
but you later want to measure f(x).

If the original measurement is binned, 
then you can only make a crude 

approximation of f using bin centers.

Optimal f (and the binning) may depend with 
time as more data are available for global 

fits - this is enabled by unbinned data!



9Motivation III: Extension to higher-dim.

Many of the proposals for unbinned measurements 
make use of machine learning and readily extend 

to many (and even variable) dimensions.

While not a direct benefit of unbinned results, this would be 
a clear game changer for how we do measurements !!

With enough (internal) information, can build correlation 
matrices between measurements post-hoc, but this 
comes for free if originally done multidimensional
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There are other examples, but these ones (and their 
extensions) are particularly well studied.



11Can these approaches preserve BSM?4

The MultiFold neural networks are composed of three
hidden layers of 100 nodes each.

For each iteration of OmniFold and MultiFold, the
neural network was trained with 120 and 20 epochs, re-
spectively, and included an early stopping condition based
on validation loss improvement. The validation sample
was constructed from a random 20% of the events. The
models are randomly initialized in the first iteration and
subsequently warm-started using the model from the pre-
vious iteration. All neural networks are implemented
using Keras [95] with the Tensorflow backend [96]
and optimized with Adam [97].

IV. HEAVY SCALAR DECAY STUDY

First, we study the case of mh = 250 GeV where 10%
of the data is BSM physics. This composition and signal
model relative to the Z+jets background are qualitatively
similar to the example presented in Ref. [69], which used
generative models.

Figure 2 shows the detector-level and truth-level distri-
butions of Z+jet invariant mass before and after unfolding.
At detector-level, which corresponds to the first step in
an iteration of the OmniFold method, the distributions
exhibit good agreement after unfolding: the height and
width of the mass peak are reproduced accurately, espe-
cially in the MultiFold case. At truth-level, the peaks
are not reproduced as sharply. In the MultiFold case,
the height and width of the peak are similar to that seen
at detector level, and in the OmniFold case, the peak is
considerably broader.

Part of the broadening is an inherent challenge with
non-trivial resolutions and limited statistics. The truth-
level peak quality can be recovered by modifying the
Generation. We are free to choose whatever Generation
we want as OmniFold is a maximum likelihood estimator
that is prior-independent. However, the closer the prior is
to the data, the more accurate the unfolding will be with
finite statistics. To test this idea, the same Truth sample
was used as above, with 180,000 SM events and 20,000
h æ Za, a æ gg, where mh = 250 GeV and ma = 16
GeV. However, now the Generation was taken to include
200,000 SM events, 10,000 h æ Za, a æ gg events with
mh = 125 GeV for each of ma = 0.5, 1, 2, 4, 8, and 16
GeV, and 10,000 h æ Za, a æ gg events with mh = 250
GeV for each of the same ma values, for a total of 320,000
events. The truth-level results of unfolding with the same
OmniFold setup discussed above are shown in Fig. 3.
Here, both the height and weight of the truth-level peak
are reproduced well by the reweighted sample. The fact
that this works well, when an application of OmniFold
with SM-only events did not, shows the importance of
su�ciently covering the relevant regions of phase space.

Adding BSM physics to the Generation sample begs the
question of what the invariant mass distribution would
look like after unfolding if the Data does not itself contain
BSM physics. To test this, the same Generation sample

FIG. 2. Distributions of the Z+jet invariant mass spectrum
for both MultiFold (top row) and OmniFold (bottom row).
Distributions are shown for both detector-level (Data and
Simulation) and truth-level (Truth and Generation) values.
The Truth and Data distributions are a combination of 180,000
Pythia 8 Z+jet events and 20,000 h æ Za, a æ gg, where mh

= 250 GeV and ma = 16 GeV. The Generation and Simulation
are 200,000 SM-only events. The weights are taken after 5
iterations of the respective unfolding procedure. The triangular
discriminator [98–100] �(p, q) =

s
d⁄ (p(⁄)≠q(⁄))2

p(⁄)+q(⁄) is used to
quantify the di�erence between distributions.

FIG. 3. Truth-level distribution of Z+jet invariant mass for
the case that OmniFold is performed with BSM events in
Generation. The BSM event included in the Generation were
drawn from events with mh = 125 GeV and mh = 250 GeV.
The weights are taken after 5 OmniFold iterations.

see also 1912.00477

2105.09923

MultiFold: 10d cross section, 
OmniFold: all particles.

BSM: H->Za

Answer: sort of … preserves 
anomaly when big enough (>1%).  

Precision continues to improve!
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The MultiFold neural networks are composed of three
hidden layers of 100 nodes each.

For each iteration of OmniFold and MultiFold, the
neural network was trained with 120 and 20 epochs, re-
spectively, and included an early stopping condition based
on validation loss improvement. The validation sample
was constructed from a random 20% of the events. The
models are randomly initialized in the first iteration and
subsequently warm-started using the model from the pre-
vious iteration. All neural networks are implemented
using Keras [95] with the Tensorflow backend [96]
and optimized with Adam [97].
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generative models.
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exhibit good agreement after unfolding: the height and
width of the mass peak are reproduced accurately, espe-
cially in the MultiFold case. At truth-level, the peaks
are not reproduced as sharply. In the MultiFold case,
the height and width of the peak are similar to that seen
at detector level, and in the OmniFold case, the peak is
considerably broader.

Part of the broadening is an inherent challenge with
non-trivial resolutions and limited statistics. The truth-
level peak quality can be recovered by modifying the
Generation. We are free to choose whatever Generation
we want as OmniFold is a maximum likelihood estimator
that is prior-independent. However, the closer the prior is
to the data, the more accurate the unfolding will be with
finite statistics. To test this idea, the same Truth sample
was used as above, with 180,000 SM events and 20,000
h æ Za, a æ gg, where mh = 250 GeV and ma = 16
GeV. However, now the Generation was taken to include
200,000 SM events, 10,000 h æ Za, a æ gg events with
mh = 125 GeV for each of ma = 0.5, 1, 2, 4, 8, and 16
GeV, and 10,000 h æ Za, a æ gg events with mh = 250
GeV for each of the same ma values, for a total of 320,000
events. The truth-level results of unfolding with the same
OmniFold setup discussed above are shown in Fig. 3.
Here, both the height and weight of the truth-level peak
are reproduced well by the reweighted sample. The fact
that this works well, when an application of OmniFold
with SM-only events did not, shows the importance of
su�ciently covering the relevant regions of phase space.

Adding BSM physics to the Generation sample begs the
question of what the invariant mass distribution would
look like after unfolding if the Data does not itself contain
BSM physics. To test this, the same Generation sample

FIG. 2. Distributions of the Z+jet invariant mass spectrum
for both MultiFold (top row) and OmniFold (bottom row).
Distributions are shown for both detector-level (Data and
Simulation) and truth-level (Truth and Generation) values.
The Truth and Data distributions are a combination of 180,000
Pythia 8 Z+jet events and 20,000 h æ Za, a æ gg, where mh

= 250 GeV and ma = 16 GeV. The Generation and Simulation
are 200,000 SM-only events. The weights are taken after 5
iterations of the respective unfolding procedure. The triangular
discriminator [98–100] �(p, q) =

s
d⁄ (p(⁄)≠q(⁄))2

p(⁄)+q(⁄) is used to
quantify the di�erence between distributions.

FIG. 3. Truth-level distribution of Z+jet invariant mass for
the case that OmniFold is performed with BSM events in
Generation. The BSM event included in the Generation were
drawn from events with mh = 125 GeV and mh = 250 GeV.
The weights are taken after 5 OmniFold iterations.
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FIG. 4. Truth-level distribution of Z+jet invariant mass for
the case that OmniFold is performed with BSM events in
Generation despite a lack of BSM events in Truth. The BSM
event included in the Generation were drawn from events with
mh = 125 GeV and mh = 250 GeV. The weights are taken
after 5 OmniFold iterations.

with 320,000 events from the preceding paragraph is used
again, but Data and Truth are taken to be 200,000 SM-
only events. The OmniFold method is applied in the
same way as above, and the resulting Z+jet invariant
mass distributions are shown in Fig. 4. The bump in the
unfolded distribution has been eliminated despite the fact
that almost 40% of events in the Generation sample were
drawn from BSM samples. To optimize the unfolding,
care must be taken when choosing the BSM models to
include in the Generation sample as well as when choosing
the number of BSM events to include – manipulating these
parameters e�ectively corresponds to choosing di�erent
priors for what is expected in the Data.

This section has demonstrated that OmniFold can
qualitatively preserve a relatively large3 and prominent
resonant signature from the data. A sideband technique
could then be used to perform a search with these data.
In the next section, we will explore the ability of Om-

niFold to precisely preserve the phase space so that a
multivariate classifier could be used for a search with the
unfolded data.

V. EXOTIC HIGGS DECAY

The signal in Sec. IV was su�ciently prominent that it
could be e�ectively searched for with a bump hunt in the

3 In fact, the amount of signal is so large, that it would result
in a significant detection from the cross-section alone, which is
well-known for Z+jets. We revisit this in Sec. VI.

Z+jet invariant mass. Not all new physics processes can
be searched for with such a simple approach. To explore
such a scenario, we consider mh = 125 GeV. In this case,
the signal bump is near the background peak and so
additional features beyond just the Z+jet invariant mass
are required. We explore the possibility of performing
a model-dependent search that uses dedicated BSM vs.
SM discriminating variables. If OmniFold e�ectively
unfolds the full phase space, it should be possible to use
any combination of variables in unfolded data.

A. Unfolding with MultiFold

First, we can consider the case of MultiFold with
two working points for BSM physics:

• 0.1% of Data and Truth events are BSM physics,
with ma = 16 GeV.

• 10% of Data and Truth events are BSM physics,
with ma = 16 GeV.

For each working point, the Data, Truth, Simulation, and
Generation sets will be once again be 200,000 events. In
each case, the Simulation and Generation sets are drawn
from the SM-only Pythia 8 sample. The SM events
in Data and Truth are also drawn from the Pythia 8
sample, but no SM event can be used in both Data and
Simulation.

The distributions of Z+jet invariant mass, jet mass,
and jet multiplicity for Truth, Generation, and unfolded
Generation are shown in Fig. 5. The impact of a 0.1%
signal is di�cult to detect in these one-dimensional his-
tograms and MultiFold has correspondingly left the
phase space mostly untouched. For the 10% signal, Mul-

tiFold clearly improves the agreement of the distribu-
tions. Similar trends hold for alternative ma values as
well (not shown).

The ratio panels in Fig. 5 show that MultiFold is
qualitatively able to encode BSM physics in the unfolded
data. To probe this in greater detail, we emulate a model-
dependent search by training a fully supervised classifier
to distinguish Z+jets events from the ma = 16 GeV
signal. A sample of 90,000 SM and 90,000 BSM events
was used for training, with 30% randomly held out as a
validation set. The neural network has the same inputs
and architecture as the one used for MultiFold

4. If
MultiFold preserves the complete phase space, then
any threshold cut on this classifier should have the same
e�ciency with the unfolded data as it does with the Truth.

The number of Truth, Generation, and unfolded Gen-
eration events passing a cut on the neural network score,

4 It is important to note that in the MultiFold case, the neural
network is trained to distinguish between Data and Simulation,
whereas the discriminator neural network is trained to distinguish
truth-level SM events from BSM events.

12Can these approaches preserve BSM?

2105.09923

Step towards improving: add 
BSM to prior during unfolding.

Has little effect when no signal 
(bottom) but makes it much easier to 
preserve signal when present (top)



13Challenge: how to publish/recast?

This breaks HEPData!

2109.13243 proposed a solution, but it has not been 
applied yet, despite the fact that OmniFold has 

been used in a few places now (H1, LHCb, STAR)

…stay tuned!



14Conclusions and Outlook

New methods for unbinned unfolding are here!  We should 
be ready to use them also for BSM!

+CMS open data study

https://arxiv.org/pdf/2303.13620.pdf
https://arxiv.org/pdf/2108.12376.pdf
https://arxiv.org/pdf/2307.07718.pdf
https://arxiv.org/pdf/2208.11691.pdf
https://arxiv.org/abs/2205.04459

