Yoran Yeh Department of Physics & Astronomy University College London

CONTUR: recent updates and ongoing developments

(Re)interpretation of the LHC results for new physics Durham University

Yoran Yeh on behalf of the CONTUR team 29 August 2023

Introduction

CONTUR workflow

CONTUR outputs $\mathcal{L}_{\mathrm{BSM}}$ contur YODA (BSM ANALYSIS yields) folder FeynRules **UFO** directory Rivet 1D 2D histograms exclusions HepMC Leading CLs analysis pool (particlelevel + ATLAS Data SM (Sherpa × NNLO) 300 SM as BC: Correlated 100% (100% Event M_{DM} events) 200 generator 400 800 1000 1200 200 600 M_{med.} [GeV]

Reinterpretation forum @ Durham 29/08/2023

CONTUR workflow

CONTUR outputs $\mathcal{L}_{\mathrm{BSM}}$ contur ANALYSIS YODA (BSM yields) folder FeynRules contur-batch **UFO** directory 1D 2D histograms exclusions $\mathcal{O}(\text{hours})$ to test 2D grid in BSM Leading CLs analysis pool parameter space to thousands ticle-ATT AS Data of individual histograms! SM (Sherpa × NNLO) 300 SM as BC: Correlated 100% (100% 800 1000 1200 200 400 600 $M_{med.}$ [GeV]

Reinterpretation forum @ Durham 29/08/2023

Reinterpretation forum @ Durham 29/08/2023

Statistical framework

- Counting experiment $\mathscr{L}(\vec{x} \mid \mu \vec{s} + \vec{b}) = \prod_{i=1}^{n} \frac{(\mu s_i + b_i)^{x_i}}{x_i!} e^{-(\mu s_i + b_i)}$
- Profile likelihood ratio as test statistic
- To be conservative, use the CLs method $\mathrm{CL}_{\mathrm{s}} = \frac{p_{s+b}}{1-p_{b}}$
- Statistical and systematic uncertainties treated in covariance matrix

$$t_{\mu}^{\text{obs}} \approx \chi_{\mu,\text{obs}}^2 = \left(\vec{x} - \mu\vec{s} - \vec{b}\right)^{\text{T}} \text{Cov.}^{-1} \left(\vec{x} - \mu\vec{s} - \vec{b}\right)$$

Include SM predictions

- Previous CONTUR talk at RiF dating back to sixth edition in 2021
 - caveat: often SM prediction not given in HEPData
 - → assume SM=data
 - ugly hack, but it works, since we claim no significant deviations seen at LHC so far
 - cannot claim discovery, only falsify BSM model
- As of now, 82/186 analyses with SM predictions available in Contur:
 - Some of them from digitising paper plots, lots of contributions from Peng Wang and UCL summer students (D. Baig, R. Novireetea, S. Rest, R. Reine)
- This is virtue of the CLs method!
- Calculate expected exclusions and do a SM test for each histogram in CONTUR

"

1000 1250 1500 1750 2000 2250

 $M_{T'}$ (GeV) Leading CLs analysis pools

 $M_{T'}$ (GeV)

95% obs. (SM as bkg.

68% obs. (SM as bkg.

95% expected limits

0 10 - 95% obs. (data as bkg.)

2500

CMS_13_LLJET

ATLAS_13_4L

ATLAS & LMETIES

ATLAS_13_L1L2METJE

ATLAS_13_LL_GAMM/

ATLAS 13 METJET

ATLAS 19 IL INT

ATLAS.S.EEJET

ATLAS_13_TTHAD

0.14 -

0.12 -

0.10

× 0.08

0.06

0.04

0.02

500 750

0.14 -

0.12

≥ 0.08

0.06

0.04 -

0.02

Reinterpretation forum @ Durham 29/08/2023

contur-mkplots-mpl

 -p flag gives quick overview of which analyses and histograms contribute to exclusion by how much

(rivetvenv) voranyeh@Yorans-MacBook-Pro-4 0000 % contur-rivetplots -INFO – Contur version 2.5.x INF0 - See https://hepcedar.gitlab.io/contur-webpage/ Writing log to contur.log INFO - Read DB file ANALYSISTEST/contur run.db CMS 13 EEJET - CMS_2019_I1753680:LMODE=EL -- d28-x01-y02 : 0.01(DATABG) 0.00(SMBG) 0.00(EXP) -- d27-x01-y02 : 0.00(DATABG) 0.00(SMBG) 0.00(EXP) -- d26-x01-y02 : 0.00(DATABG) 0.00(SMBG) 0.00(EXP) - CMS_2018_I1667854:LMODE=EL -- d05-x01-y01 : 0.11(DATABG) 0.00(SMBG) 0.00(EXP) -- d08-x01-y01 : 0.04(DATABG) 0.00(SMBG) 0.00(EXP) -- d14-x01-y01 : 0.39(DATABG) 0.00(SMBG) 0.00(EXP) -- d11-x01-y01 : 0.19(DATABG) 0.00(SMBG) 0.00(EXP) -- d07-x01-v01 : 0.02(DATABG) 0.00(SMBG) 0.00(EXP) -- d16-x01-y01 : 0.10(DATABG) 0.00(SMBG) 0.00(EXP) -- d13-x01-y01 : 0.28(DATABG) 0.00(SMBG) 0.00(EXP) -- d02-x01-y01 : 0.21(DATABG) 0.00(SMBG) 0.00(EXP) -- d10-x01-y01 : 0.18(DATABG) 0.00(SMBG) 0.00(EXP) -- d01-x01-y01 : 0.19(DATABG) 0.00(SMBG) 0.00(EXP) -- d04-x01-y01 : 0.12(DATABG) 0.00(SMBG) 0.00(EXP) -- d18-x01-y01 : 0.09(DATABG) 0.00(SMBG) 0.00(EXP) -- d09-x01-y01 : 0.08(DATABG) 0.00(SMBG) 0.00(EXP) -- d15-x01-y01 : 0.46(DATABG) 0.00(SMBG) 0.00(EXP) -- d12-x01-y01 : 0.20(DATABG) 0.00(SMBG) 0.00(EXP) -- d03-x01-y01 : 0.07(DATABG) 0.00(SMBG) 0.00(EXP) -- d06-x01-y01 : 0.21(DATABG) 0.00(SMBG) 0.00(EXP) -- d17-x01-v01 : 0.09(DATABG) 0.00(SMBG) 0.00(EXP) ATLAS 13 METJET - ATLAS 2017 I1609448 -- d02-x01-y01 : 0.00(DATABG) 0.00(SMBG) 0.15(EXP) -- d01-x01-y01 : 0.00(DATABG) 0.00(SMBG) 0.36(EXP) -- d04-x01-y01 : 0.00(DATABG) 0.00(SMBG) 0.17(EXP) -- d03-x01-y01 : 0.00(DATABG) 0.00(SMBG) 0.16(EXP)

contur-mkplots-mpl

- -p flag gives quick overview of which analyses and histograms contribute to exclusion by how much
- Filter by name of the analysis or pool and CLs exclusion contur-rivetplots -p --ana-match CMS --cls 0.5

(rivetvenv) yoranyeh@Yorans-MacBook-Pro-4 0000 % contur-rivetplots -p --ana-match CMS --cls 0.5 -i ANALYSISTEST | head -n 35 INFO - Contur version 2.5.x INF0 - See https://hepcedar.gitlab.io/contur-webpage/ Writing log to contur.log INFO - Read DB file ANALYSISTEST/contur run.db CMS_13_MMJET - CMS_2021_I1866118 -- d05-x01-y01 : 1.00(DATABG) 0.99(SMBG) 0.99(EXP) -- d02-x01-y01 : 1.00(DATABG) 0.99(SMBG) 1.00(EXP) -- d01-x01-y01 : 1.00(DATABG) 0.97(SMBG) 0.99(EXP) -- d04-x01-y01 : 1.00(DATABG) 0.94(SMBG) 1.00(EXP) -- d03-x01-y01 : 1.00(DATABG) 0.86(SMBG) 0.99(EXP) CMS 13 LLJET - CMS_2022_I2079374 -- d05-x01-y01 : 0.56(DATABG) 0.00(SMBG) 0.00(EXP) -- d07-x01-y01 : 0.97(DATABG) 0.00(SMBG) 0.00(EXP) -- d27-x01-y01 : 0.99(DATABG) 0.00(SMBG) 0.00(EXP) -- d09-x01-v01 : 0.95(DATABG) 0.00(SMBG) 0.00(EXP) -- d25-x01-y01 : 0.84(DATABG) 0.00(SMBG) 0.00(EXP) -- d17-x01-y01 : 0.93(DATABG) 0.00(SMBG) 0.00(EXP) CMS_13_LMETJET - CMS 2018 I1662081 -- d11-x01-y01 : 0.97(DATABG) 0.42(SMBG) 0.86(EXP) -- d13-x01-y01 : 1.00(DATABG) 0.80(SMBG) 0.99(EXP) -- d10-x01-y01 : 1.00(DATABG) 0.00(SMBG) 0.92(EXP) -- d09-x01-y01 : 0.98(DATABG) 0.00(SMBG) 0.81(EXP) -- d12-x01-y01 : 1.00(DATABG) 0.90(SMBG) 0.93(EXP) - CMS 2018 I1663958 -- d32-x01-y01 : 1.00(DATABG) 0.86(SMBG) 1.00(EXP) -- d05-x01-y01 : 1.00(DATABG) 0.99(SMBG) 1.00(EXP) -- d50-x01-v01 : 0.89(DATABG) 0.00(SMBG) 0.50(EXP) -- d67-x01-y01 : 0.93(DATABG) 0.00(SMBG) 0.54(EXP) -- d19-x01-y01 : 0.99(DATABG) 0.21(SMBG) 0.76(EXP)

-- d76-x01-v01 : 0.75(DATABG) 0.00(SMBG) 0.35(EXP)

contur-mkplots-mpl

- -p flag gives quick overview of which analyses and histograms contribute to exclusion by how much
- Filter by name of the analysis or pool and CLs exclusion contur-rivetplots -p --ana-match CMS --cls 0.5
- Remove -p option to execute the (already produced) Python scripts and provide you with HTML booklet of plots

Yoran Yeh

Further improvements

- Rivet + CONTUR interface in MG5 and vice versa
 - Very successful tutorial in the recent MCnet school at Durham!
- Interfaced to GAMBIT
 - Publication on constraining the electroweakino in MSSM (<u>talk at RiF 2022</u>, <u>2303.09082</u>)
- Ongoing work to run CONTUR on MC production runs in ATLAS
- contur_run.db file, small and more readable
- Deal with different integrated luminosities within the same measurement

Further improvements

- Support for PyPI: pip install contur
- Covariance matrices used from HEPdata (in >20 analyses)
 - Alternatively, build covariance matrix from error breakdown (correlating errors), or if this is not available assume matrix is diagonal
- Many, many more new analyses and SM predictions!
 - When publishing results, include:
 - HEPData record for measured data (with a breakdown of the systematics, correlations matrices)
 - * Rivet routine
 - Best-available SM predictions (plus total crosssection if normalised!) <u>Matous' talk at RiF @ CERN</u>

1.00000

How to get involved?

- To get started: link to code repository and tutorial
 - Local installation using PyPI or build manually
 - MG5 interface
 - For CERN users: Rivet + CONTUR installation on LXPLUS
 - Docker container
 - <u>Mattermost channel</u>
- Sky is the limit, any BSM theory can be tested in principle
 - Results webpage: <u>https://hepcedar.gitlab.io/contur-webpage/index.html</u>
 - Combined constraints on dark photons [JHEP 03 (2023) 182]
 - Testing the scalar triplet solution to CDF's heavy W problem at the LHC [Phys.Rev.D 107 (2023) 7, 075020]

- Developing CONTUR into a tool that is more widely used and usable! Recent updates in:
 - Making the interface more user-friendly
 - More analyses (and theory predictions) available to improve limit-setting
- Thank you for your attention!