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Introduction
• Likelihood functions (full statistical models) parametrise the full information of an LHC analysis; 
wether it is New Physics (NP) search or an SM measurement.


• Their preservation is a key part of the LHC legacy. 
•Usage: Resampling, Reinterpretation in the context of different NP models and/or with with different 
statistical approaches,….  

A brief story on full statistical model publication and usage: 
•ATLAS started publishing full likelihoods of NP searches (2019)  ATL-PHYS-PUB-2019-029.

•Release of the pyhf package to construct statistical models (2020) 10.21105/joss.02823, L Heinrich, M Feickert, G Stark

• Interface with reinterpretation tools:  SmodelS (2020) arXiv:2009.01809, MadAnalysis (2022) arXiv:2206.14870, 

•Spey: Generalised framework for likelihood handling  (2023) arXiv:2307.06996.                   see Jack’s talk 
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Why (Machine) Learning Profiled  Likelihoods?
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•In LHC-reinterpretation, to exclude a BSM model, we are mostly interested in the 
profiled likelihood given a signal strength.

•Optimally, we can compute the profiled likelihood from pyhf’s full statistical models.
•However, this computation can take the order of seconds by parameter point.
•A pheno study may require to survey thousands of points.
•This considerably scales-up the time consumption. Specially for fast reinterpretation 
approaches.

•Using Neural Networks  provides a fast and compact way using profiled likelihoods 
in our day-to-day pheno studies.

•We will super useful when launching a new protomodel-based anomaly search. 
(arXiv:2105.09020)
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LHC likelihoods in a nutshell 

P(μ, θ; data) = Πnc
k=1P[ni; μϵi,k( ⃗θ )NS,i,k( ⃗θ ) + Bi.k( ⃗θ )]Πnsyst

j=1G(θobs
j ; θj; 1)

With this we perform global fits, exclude BSM models, find upper limits, search for SM 
deviations, etc.

LHC  Statistical model:

Parameters of Interest (signal strength, observables, etc.)

Nuisance parameters (uncertainties)
(Observed) data

(Auxiliary) data

Bayes theorem:

P(Θ, x) = Px(x |Θ)πΘ(Θ) = PΘ(Θ |x)πx(x)
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The importance of the Profile Likelihood

L(x |μ; ̂θ(μ))

t(μ) = − 2 log
L(μ; ̂θ(μ))
L( ̂μ, ̂θ( ̂μ))

t = − 2 ln(
Ls+b

Lb
)

t = − 2 ln
L(μ = 1, ̂θ(1))
L(μ = 0, ̂θ(0))

tA(μ) =
LA(μ, ̂θ)

̂μ, ̂ ̂θ
=

LA(μ, ̂θ)

μ′ , ̂ ̂θ

The Profile Likelihood (PL) is a function where the nuisance parameters are 
fixed such that the likelihood is maximised given a signal strength . So the 
PL is a function of , here on .

μ
x ns

With the PL we construct Log Likelihood Ratio (LLR) tests. Depending on 
how the PL is fitted and defined, we can derive upper limits,  exclusion 
confidence levels and discoveries.

Note that to derive  p-values of the test statistics we need to know their 
distributions. For this you may need the Asimov Likelihood. This is derived from 
the Asimov data set, defined in such a way that “when one uses it to evaluate the 
estimators for all parameters, one obtains the true parameter values”.

We plan to learn Likelihood Observed,Excluded (fit to ) and the corresponding Asimov Likelihoods.μ = 1,0

(see arXiv:1007.1727)
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•NFLikelihood.
•Unsupervised Learning with Normalising Flows.
•See my talk from last RiF: (https://indico.cern.ch/event/1197680/timetable/#13-machine-learning-lhc-likeli)
•Paper to appear soon. (H.R-G., R.Torre)

Previous work on learning LHC Likelihoods 
PΘ(Θ |x = obs) 68% HPDI test: [-1.16e-01,5.81e-01]

68% HPDI DNN F3: [-1.31e-01,5.83e-01]
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DNN F3 sampling

Test set (106 points)

Sampled DNN F3 (106 points)

68.27% HPDI

95.45% HPDI

99.73% HPDI

•DNNLikelihood
•Supervised Learning with Deep Neural Networks.
•arXiv:1911.03305 (A. Coccaro, M. Pierini, L. Silvestrini, R. Torre )
•

Also, remember Nathan’s talk yesterday on learning profiled EFT analyses!

https://indico.cern.ch/event/1197680/timetable/#13-machine-learning-lhc-likeli
https://indico.cern.ch/event/1197680/timetable/#13-machine-learning-lhc-likeli
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Example Likelihoods 
ATLAS-SUSY-2018-04
•Search for direct stau production in events with two -leptons
•Number of SRs: 2
•DOI: 10.1103/PhysRevD.101.032009

τ

ATLAS-SUSY-2018-31 (A,B,C)
•Search for bottom-squark pair production in final states containing Higgs , b-jets and 
MET
•Divided into 3 subregions (A,B,C).
•Number of SRs: A: 3,B: 1,C: 4. 

ATLAS-SUSY-2019-08
• Search for direct production of e-winos in final states with 1 lepton, MET and a Higgs 

boson decaying into 2 -jets
• Number of SRs: 9.
• DOI: https://doi.org/10.17182/hepdata.90607.v4

https://doi.org/10.1103/PhysRevD.101.032009
https://doi.org/10.1103/PhysRevD.101.032009
https://doi.org/10.17182/hepdata.90607.v4
https://doi.org/10.17182/hepdata.90607.v4


Training strategy.
•Sampling: MCMC Metropolis-Hasting towards the min and max, to cover the full parameter space. The 

data was generated using an pyhf-SModelS interface. The Asimov Likelihood data was obtained with spey.
•The Input is  and the Output . 
•Training: All models were Multi-Layer Perceptrons (MPE) trained using Mean Squared Error loss function, 

ADAM optimiser and LeakyReLU activation functions. Data was divided as training-validation-test on a 
60-20-20 scheme. 

•Testing: The accuracy of the NN models was measured with the Mean (MAPE) and Max (MaxAPE) 
Absolute Percentage Error. 

•Saving: After training, the best models for each analysis are ensemble together and saved as ONNX files.

ns −ln(L)
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ATLAS-SUSY-2018-04, 2 SRS
OBSERVED

EXPECTED

HYPERPARAMS

Hidden layers 3X128

L2 regularisation 10^-5

Max epochs 300 X 4

Batch size 32

N samples 30k

METRICS
MAPE
0.0352

MaxAPE
0.5379

HYPERPARAMS

Hidden layers 3X256

L2 regularisation 10^-5

Max epochs 300 X 4

Batch size 32

30k

METRICS
MAPE
0.01154

MaxAPE
.14525

N samples
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ATLAS-SUSY-2018-04, 2 SRS
ASIMOV OBSERVED

ASIMOV EXPECTED

HYPERPARAMS

Hidden layers 3X128

L2 regularisation 0

Max epochs 200 X 4

Batch size 64

N samples 12k

METRICS
MAPE
0.0161

MaxAPE
0.2964

HYPERPARAMS

Hidden layers 3X128

L2 regularisation 0

Max epochs 200 X 4

Batch size 64

20k

METRICS
MAPE
0.0297

MaxAPE
.180

N samples



ATLAS-SUSY-2018-31-A, 3 SRS
OBSERVED

EXPECTED

HYPERPARAMS

Hidden layers 3X1024

L2 regularisation 10^-5

Max epochs 300 X 4

Batch size 32

N samples 20k

METRICS
MAPE
0.0643

MaxAPE
0.96305

HYPERPARAMS

Hidden layers 2X1024

L2 regularisation 10^-5

Max epochs 300 X 4

Batch size 32

N samples 20k

METRICS
MAPE
.04969

MaxAPE
0.9501
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ATLAS-SUSY-2018-31-C, 3 SRS
OBSERVED

HYPERPARAMS

Hidden layers 3X1024

L2 regularisation 0

Max epochs 300 X 4

Batch size 32

N samples 20k

METRICS
MAPE
0.0604

MaxAPE
1.8334

METRICS
MAPE
0.0546

MaxAPE
0.9813

HYPERPARAMS

Hidden layers 3X1024

L2 regularisation 0

Max epochs 300 X 4

Batch size 32

N samples 20k

EXPECTED



ATLAS-SUSY-2019-08, 9 SRS
OBSERVED

EXPECTED

HYPERPARAMS

Hidden layers 3X1024

L2 regularisation 0

Max epochs 1000 X 4

Batch size 32

N samples 80k

METRICS
MAPE
0.2164

MaxAPE
4.735

HYPERPARAMS

Hidden layers 4X1024

L2 regularisation 0

Max epochs 1000 X 4

Batch size 32

N samples 80k

METRICS
MAPE
0.2723

MaxAPE
8.455
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SPEED GAIN*

PYHF NN 1 sample NN 1000 samples
 (single pass)

ATLAS-SUSY-2018-04 .75s .026s .037s

ATLAS-SUSY-2018-31-A .46s .027s .063s

ATLAS-SUSY-2018-31-C .58s .03s .063s

ATLAS-SUSY-2019-08 2.81s .026s .06s

At least an order of magnitude faster!

*On a Macbook Air
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DEPLOYMENT STRATEGY

•ONNX models will be available on GitHub/Zenodo.
•Write a Spey backend for smooth statistical interpretations.
•Planned interface to SModelS.
•Ready to use for your reinterpretation studies.

Under construction



Conclusions
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•Full statistical models are a key aspect of the LHC legacy.
•From them, we extract accurate profile likelihoods required for our pheno studies.
•Computing them from pyhf’s statistical models takes a significant amount of time in the large 
scale.

• NNs provide an orders of magnitude faster solution.
•We found that profiled likelihoods are easily learnable by NNs.
•They can easily be integrated into modern reinterpretation frameworks.
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THANK YOU!


