(Re)interpretation of the LHC results for new physics Durham University

Testing the Standard Model and beyond with $B \rightarrow PP$ decays

29th August 2023

Adam Szabelski

Motivation and general idea O	Diagrammatic approach 00000	SU(3) group decomposition 00	fits 00000	Summary 000	Backup 00000000
Outline					

🕸 NCBJ

- 1. Motivation and general idea
- 2. Diagrammatic approach
- 3. OPE and the NP phase ϕ in the SM
- 4. SU(3) group decomposition
- 5. fits
- 6. Summary

🕸 NCBJ

Newest LHCb results: $B^+ \to K^+ \pi^0$ - Phys. Rev. Lett. 126(9), 091802 (2021) $B^0 \to K^+ \pi^-$ - JHEP 03, 075 (2021) World average:

$$\begin{split} \Delta A_{CP}(K\pi) &= A_{CP}(B^+ \to K^+\pi^0) - A_{CP}(B^0 \to K^+\pi^-) = 0.114 \pm 0.014 \\ \Delta A_{CP}(K\pi) &= 0 \quad \text{isospin symmetry} \\ \Delta A_{CP}(K\pi) &= (0.018^{+0.041}_{-0.032}) \quad \text{QCD factorisation} \end{split}$$

Over 8σ different from 0

colour-suppressed

(f) annihilation

Diagrammatic approach 00000 Operator product expansion $B \to \pi K - b \to s, \ \Delta U = \Delta C = 0$ $(\bar{p}q)_{V+A} \equiv \bar{p}\gamma^{\mu}(1\pm\gamma_5)q$ S NCBJ $Q_1^{\alpha} \equiv (\bar{b}_x \alpha_y)_{V-A} (\bar{\alpha}_y s_x)_{V-A}, \\ Q_2^{\alpha} \equiv (\bar{b}\alpha)_{V-A} (\bar{\alpha}s)_{V-A};$ $Q_{3} \equiv (\bar{b}s)_{V-A} \sum_{q} (\bar{q}q)_{V-A},$ $Q_{4} \equiv (\bar{b}_{x}s_{y})_{V-A} \sum_{q} (\bar{q}yq_{x})_{V-A},$ $Q_{5} \equiv (\bar{b}s)_{V-A} \sum_{q} (\bar{q}q)_{V+A},$ Gluonic-penguin operators $Q_6 \equiv (\bar{b}_x s_y)_{V-A} \sum_a (\bar{q}_y q_x)_{V+A};$ $Q_7 \equiv \frac{3}{2} (\bar{b}s)_{V-A} \sum_q (e_q \bar{q} q)_{V+A},$ $Q_{8} \equiv \frac{3}{2} (\bar{b}_{x} s_{y})_{V-A} \sum_{q}^{q} (e_{q} \bar{q}_{y} q_{x})_{V+A},$ $Q_{9} \equiv \frac{3}{2} (\bar{b}_{s})_{V-A} \sum_{q} (e_{q} \bar{q}_{q})_{V-A},$ Electroweak-penguin operators $Q_{10} \equiv \frac{3}{2} (\bar{b}_x s_y)_{V-A} \sum_{q} (e_q \bar{q}_y q_x)_{V-A};$

Motivation and general idea O	Diagrammatic approach 00●00	SU(3) group decomposition 00	fits 00000	Summary 000	Backup oooooooo
Parameterisati	on				

S NCBJ

$$\begin{split} \tilde{T} &= \lambda^3 A R_b (\mathcal{T} - \mathcal{P}_{tu} + \mathcal{E} - \mathcal{P} \mathcal{A}_{tu}), \\ \tilde{C} &= \lambda^3 A R_b (\mathcal{C} + \mathcal{P}_{tu} - \mathcal{E} + \mathcal{P} \mathcal{A}_{tu}), \\ P &= \lambda^3 A (\mathcal{P}_t - \mathcal{P}_c), \end{split}$$

$$r_X = \frac{X}{P} \quad e.g. \ r_T = \frac{\tilde{T}}{P}$$
$$\sqrt{2}\mathcal{A}(B^+ \to \pi^0 \pi^+) = -P \left[e^{i\gamma}(r_T + r_C) + e^{-i\beta}\tilde{q}(r_T + r_C) \right],$$
$$\mathcal{A}(B^0 \to \pi^- \pi^+) = P(1 - r_T e^{i\gamma})$$
$$\sqrt{2}\mathcal{A}(B^0 \to \pi^0 \pi^0) = P(1 + r_C e^{i\gamma} + e^{-i\beta}\tilde{q}(r_T + r_C))$$

$$\tilde{q} \equiv \left| \frac{P_{EW} + P_{EW}^C}{T + C} \right|$$

7

$B\to K\pi$

P'

 r_{ρ_c}

 a_C

$$\begin{split} q e^{i\phi} e^{i\omega} &\equiv -\left(\frac{\mathcal{P}_{EW}' + \mathcal{P}_{EW}'^C}{\hat{T}' + \hat{C}'}\right)\\ &\ln \text{SM:} q e^{i\phi} e^{i\omega} \equiv \frac{-3}{2\lambda^2 R_b} \left[\frac{C_{\theta}(\mu) + C_{10}(\mu)}{C_1(\mu) + C_2(\mu)}\right] R_q = (0.64 \pm 0.05) R_q \end{split}$$

 $R_q = 1 \pm 0.05$ - compensates for possible SU(3) violation

 $\begin{array}{c|c} \mbox{Motivation and general idea} & \mbox{Diagrammatic approach} & \mbox{OPE and the NP phase ϕ in the SM} & \mbox{SU}(3) \mbox{group decomposition} & \mbox{fits} & \mbox{Subscript{Subscrip{Subscript{Subscript{Subs$

$$\nabla 2A(B_d^0 \to \pi^0 K^0) = -P' \left[1 + r_{\rho_c} e^{i\gamma} - \left(1 - \frac{2}{3} a_C \right) q e^{i\omega} e^{i\phi} (r'_T + r'_C) + r'_C e^{i\gamma} \right]$$

$$P' \equiv \frac{\lambda^3 A}{\sqrt{\epsilon}} (\mathcal{P}'_t - \mathcal{P}'_c)$$

$$r_{\rho_c} \equiv \frac{\rho_c e^{i\theta_c}}{P'} \equiv \left(\frac{\lambda^2 R_b}{1-\lambda^2}\right) \left[\frac{\mathcal{P}'_t - \mathcal{P}'_u - \mathcal{A}'}{\mathcal{P}'_t - \mathcal{P}'_c}\right] \quad B^+ \to K^+ \overline{K}^0: \quad \rho_c = 0.03 \pm 0.01, \quad \theta_c = (2.6 \pm 4.6)^\circ$$

$$a_C \equiv \frac{\hat{\mathcal{P}}_{EW}^{\prime C}}{\hat{\mathcal{P}}'_{EW} + \hat{\mathcal{P}}_{EW}^{\prime C}}$$

$$Isospin relation$$

$$\sqrt{2}\mathcal{A}(B^+ \to K^0 \pi^0) + \mathcal{A}(B^+ \to K^+ \pi^-) =$$

$$\sqrt{2}\mathcal{A}(B^+ \to K^+ \pi^0) + \mathcal{A}(B^0 \to K^0 \pi^+)$$

$$q e^{i\phi} e^{i\omega} \equiv -\left(\frac{\mathcal{P}_{EW}' + \mathcal{P}_{EW}'^C}{\hat{r}' + \hat{c}'}\right)$$
$$\ln SM: q e^{i\phi} e^{i\omega} \equiv \frac{-3}{2\lambda^2 R_b} \left[\frac{C_9(\mu) + C_{10}(\mu)}{C_1(\mu) + C_2(\mu)}\right] R_q = (0.64 \pm 0.05) R_q$$

 $R_q = 1 \pm 0.05$ - compensates for possible SU(3) violation

MCBJ

Connection between amplitudes describing $B \to \pi\pi$ and $B \to K\pi$ decays

$$B \to \pi \pi$$
 - $b \to d \iff B \to K \pi$ - $b \to s(')$

$$R_{T+C} = \left| \frac{T' + C'}{T + C} \right| \equiv \left| \frac{(r'_T + r'_C)P'}{\epsilon(r_T + r_C)P} \right| = 1.21 \pm 0.015 \text{ QCDF}$$
$$R_{T+C} = 1.2 \pm 0.2 \text{ safe estimate}$$
$$\epsilon \equiv \frac{\lambda^2}{1 - \lambda^2} = 0.0535 \pm 0.0002$$

 $arg(r'_T) - arg(r_T) = 0 \pm 20^{\circ}$ $arg(r'_C) - arg(r_C) = 0 \pm 20^{\circ}$

same as arxiv:1806.08783 R. Fleischer et al.

[Matthias Neubert and Jonathan L. Rosner]

$$H_{eff} = \frac{G_F}{\sqrt{2}} \left[\sum_{i=1,2} C_i (\lambda_u Q_i^u + \lambda_c Q_i^c) + \lambda_t \sum_{i=3}^{10} C_i Q_i \right] + \text{h.c.}$$
$$\lambda_\alpha = V_{\alpha b}^* V_{\alpha s} \quad \lambda_u + \lambda_c + \lambda_t = 0$$

$$C_7, C_8 \ll C_9, C_{10} + \text{Fierz identity} \implies Q_9^{\Delta I=1} \sim Q_1^u - Q_1^d$$
, $Q_{10}^{\Delta I=1} \sim Q_2^u - Q_2^d$

When the operators are linearly dependent the weak phase between them $\phi_{SM} = 0$ The weak interaction can break SU(3) but this reasoning there is a strong constrain on the weak phase of $qe^{i(\phi+\omega)}$ in the SM.

S NCBJ

Operators: $\overline{q}_1 \overline{q}_3 q_2 \simeq (\overline{b}q_1)(\overline{q}_2 q_3)$ form a SU(3) group that can be decomposed into:

 $\overline{\mathbf{3}}\otimes\overline{\mathbf{3}}\otimes\mathbf{3}=\overline{\mathbf{3}}\oplus\overline{\mathbf{3}}\oplus\mathbf{6}\oplus\overline{\mathbf{15}}$

$$\mathcal{A}^{tree}(B^0 \to \pi^- K^+) + \sqrt{2}\mathcal{A}^{tree}(B^0 \to \pi^0 K^0) = T' + C' = -\lambda_u^{(s)} \frac{\sqrt{10}}{3} (C_1 + C_2) \langle 27||\overline{15}_{I=1}||3\rangle$$

Operators: $\overline{q}_1 \overline{q}_3 q_2 \simeq (\overline{b}q_1)(\overline{q}_2 q_3)$ form a SU(3) group that can be decomposed into:

 $\overline{\mathbf{3}}\otimes\overline{\mathbf{3}}\otimes\mathbf{3}=\overline{\mathbf{3}}\oplus\overline{\mathbf{3}}\oplus\mathbf{6}\oplus\overline{\mathbf{15}}$

$$\mathcal{A}^{tree}(B^0 \to \pi^- K^+) + \sqrt{2}\mathcal{A}^{tree}(B^0 \to \pi^0 K^0) = T' + C' = -\lambda_u^{(s)} \frac{\sqrt{10}}{3} (C_1 + C_2) \langle 27||\overline{15}_{I=1}||3\rangle$$
$$\mathcal{P}^{EW}(B^+ \to \pi^+ K^0) + \sqrt{2}\mathcal{P}^{EW}(B^+ \to \pi^0 K^+) = \mathcal{P}'_{EW} + \mathcal{P}'_{EW}^C = -\lambda_t^{(s)} \sqrt{\frac{5}{2}} (C_9 + C_{10}) \langle 27||\overline{15}_{I=1}||3\rangle$$

Operators: $\overline{q}_1 \overline{q}_3 q_2 \simeq (\overline{b}q_1)(\overline{q}_2 q_3)$ form a SU(3) group that can be decomposed into:

 $\overline{\mathbf{3}}\otimes\overline{\mathbf{3}}\otimes\mathbf{3}=\overline{\mathbf{3}}\oplus\overline{\mathbf{3}}\oplus\mathbf{6}\oplus\overline{\mathbf{15}}$

$$\mathcal{A}^{tree}(B^0 \to \pi^- K^+) + \sqrt{2}\mathcal{A}^{tree}(B^0 \to \pi^0 K^0) = T' + C' = -\lambda_u^{(s)} \frac{\sqrt{10}}{3} (C_1 + C_2) \langle 27||\overline{15}_{I=1}||3\rangle$$
$$\mathcal{P}^{EW}(B^+ \to \pi^+ K^0) + \sqrt{2}\mathcal{P}^{EW}(B^+ \to \pi^0 K^+) = \mathcal{P}'_{EW} + \mathcal{P}'_{EW}^C = -\lambda_t^{(s)} \sqrt{\frac{5}{2}} (C_9 + C_{10}) \langle 27||\overline{15}_{I=1}||3\rangle$$

Combining the two:

$$\mathcal{P'}_{EW} + \mathcal{P'}_{EW}^{C} = \frac{3}{2} \frac{\lambda_t^{(s)}}{\lambda_u^{(s)}} \frac{C_9 + C_{10}}{C_1 + C_2} (T' + C')$$

Operators: $\overline{q}_1 \overline{q}_3 q_2 \simeq (\overline{b}q_1)(\overline{q}_2 q_3)$ form a SU(3) group that can be decomposed into:

 $\overline{\mathbf{3}}\otimes\overline{\mathbf{3}}\otimes\mathbf{3}=\overline{\mathbf{3}}\oplus\overline{\mathbf{3}}\oplus\mathbf{6}\oplus\overline{\mathbf{15}}$

$$\mathcal{A}^{tree}(B^0 \to \pi^- K^+) + \sqrt{2}\mathcal{A}^{tree}(B^0 \to \pi^0 K^0) = T' + C' = -\lambda_u^{(s)} \frac{\sqrt{10}}{3} (C_1 + C_2) \langle 27||\overline{15}_{I=1}||3\rangle$$
$$\mathcal{P}^{EW}(B^+ \to \pi^+ K^0) + \sqrt{2}\mathcal{P}^{EW}(B^+ \to \pi^0 K^+) = \mathcal{P}'_{EW} + \mathcal{P}'_{EW}^C = -\lambda_t^{(s)} \sqrt{\frac{5}{2}} (C_9 + C_{10}) \langle 27||\overline{15}_{I=1}||3\rangle$$

Combining the two:

$$\mathcal{P'}_{EW} + \mathcal{P'}_{EW}^{C} = \frac{3}{2} \frac{\lambda_t^{(s)}}{\lambda_u^{(s)}} \frac{C_9 + C_{10}}{C_1 + C_2} (T' + C')$$

In SM:
$$q e^{i\phi} e^{i\omega} \equiv rac{-3}{2\lambda^2 R_b} \left[rac{C_9(\mu) + C_{10}(\mu)}{C_1(\mu) + C_2(\mu)}
ight] R_q = (0.64 \pm 0.05) R_q$$

In $SU(3)$ limit: $\omega = 0$

O	00000		O●	00000	000	00000000
P_{EW} and P_{EW}^C						
		$b_3 = \lambda_t^{(s)} \frac{3}{2} (C_9 - C_{10}) \langle 8 $	6 3⟩			S NCBJ
		$b_4 = \lambda_t^{(s)} \frac{1}{2} (C_9 + C_{10}) \langle 8]$	$\overline{15} 3 angle$			·
		$b_5 = \lambda_t^{(s)} \frac{1}{2} (C_9 + C_{10}) \langle 27 $	$ \overline{15} 3 angle$			
	$P_{EW}' + P_{EW}'^{C} =$	$= -\sqrt{\frac{5}{2}} b_5 = \frac{3}{2} \frac{\lambda_t^{(s)}}{\lambda_u^{(s)}} e^{i\gamma} \frac{C_9 + C_{10}}{C_1 + C_2}$	$C(T+C) = -qe^{i\phi}(T'+C')$)		
	$P'^{C}_{EW} =$	$=\frac{1}{2}\sqrt{\frac{3}{5}}b_3+\frac{3}{2}\sqrt{\frac{3}{5}}b_4-\frac{3}{2}\sqrt{\frac{2}{5}}b_5$				
	=	$= \frac{3}{4} \frac{\lambda_t^{(s)}}{\lambda_u^{(s)}} e^{i\gamma} \left(-\frac{C_9 - C_{10}}{C_1 - C_2} (T' - C_1) \right) \right)$	C') + $\frac{C_9 + C_{10}}{C_1 + C_2} (T' + C')$			
	$\frac{C_9 - C_{10}}{C_1 - C_2} \simeq$	$\frac{C_9 + C_{10}}{C_1 + C_2}$				
	$P'_{EW}^{C} =$	$= -qe^{i\phi}C' \qquad P'_{EW} = -qe^{i\phi}T'$				
	$P_{EW} + P_{EW}^C =$	$= -\frac{\sqrt{5}}{2}b_5 = \lambda^2 R_b \left \frac{V_{td}}{V_{ub}} \right q e^{i(\phi - \beta)}$	$f^{(3)}(T'+C')\frac{f_{\pi}}{f_K}$			

Exchange and annihilation diagrams neglected.

Motivation and general idea O	Diagrammatic approach	OPE and the NP phase ϕ in the SM o	SU(3) group decomposition	1115 Sui 00000 OC	mmary васкир о оооооооо
P_{EW} and P_{EW}^C					
		$b_3 = \lambda_t^{(s)} \frac{3}{2} (C_9 - C_{10}) \langle 8 $	6 3 angle		S NCBJ
		$b_4 = \lambda_t^{(s)} \frac{1}{2} (C_9 + C_{10}) \langle 8 $	$\overline{f 15} f 3 angle$		
		$b_5 = \lambda_t^{(s)} \frac{1}{2} (C_9 + C_{10}) \langle 27 \rangle$	$ \overline{f 15} {f 3} angle$		
	$P'_{EW} + P'^{C}_{EW} =$	$= -\sqrt{\frac{5}{2}} b_5 = \frac{3}{2} \frac{\lambda_t^{(s)}}{\lambda_u^{(s)}} e^{i\gamma} \frac{C_9 + C_{10}}{C_1 + C_2}$	$\frac{1}{2}(T+C) = -qe^{i\phi}(T'+C')$		New Physics
	$P'^{C}_{EW} =$	$=\frac{1}{2}\sqrt{\frac{3}{5}}b_3+\frac{3}{2}\sqrt{\frac{3}{5}}b_4-\frac{3}{2}\sqrt{\frac{2}{5}}b_5$		/	
	=	$= \frac{3}{4} \frac{\lambda_t^{(s)}}{\lambda_u^{(s)}} e^{i\gamma} \left(-\frac{C_9 - C_{10}}{C_1 - C_2} (T' - \frac{C_9 - C_{10}}{C_1 - C_2}) \right)$	C') + $\frac{C_9 + C_{10}}{C_1 + C_2} (T' + C')$		//
	$\frac{C_9 - C_{10}}{C_1 - C_2} \simeq$	$\frac{C_9 + C_{10}}{C_1 + C_2}$			
	$P'^{C}_{EW} =$	$= -qe^{i\phi}C' \qquad P'_{EW} = -qe^{i\phi}T'$			
	$P_{EW} + P_{EW}^C =$	$= -\frac{\sqrt{5}}{2}b_5 = \lambda^2 R_b \left \frac{V_{td}}{V_{ub}} \right q e^{i(\phi - \beta)}$	$\overline{f_{\beta}}(T'+C')\frac{f_{\pi}}{f_{K}}$		
		T T			

Exchange and annihilation diagrams neglected.

Motivation and general idea	Diagrammatic approach	OPE and the NP phase ϕ in the SM O	SU(3) group decomposition	TITS 00000	ooo	оооооооо
P_{EW} and P_{EW}^C						
		$b_3 = \lambda_t^{(s)} \frac{3}{2} (C_9 - C_{10}) \langle 8 $	6 3⟩			🕸 NCBJ
		$b_4 = \lambda_t^{(s)} \frac{1}{2} (C_9 + C_{10}) \langle 8 $	$\overline{f 15} f 3 angle$			
		$b_5 = \lambda_t^{(s)} \frac{1}{2} (C_9 + C_{10}) \langle 27 \rangle$	$ \overline{f 15} f 3 angle$		mode	el-dependent
	$P'_{EW} + P'^{C}_{EW} =$	$= -\sqrt{\frac{5}{2}}b_5 = \frac{3}{2}\frac{\lambda_t^{(s)}}{\lambda_u^{(s)}}e^{i\gamma}\frac{C_9 + C_{10}}{C_1 + C_2}$	$e^{0}(T+C) = -qe^{i\phi}(T'+C')$)	Ne	w Physics
	$P'^{C}_{EW} =$	$=\frac{1}{2}\sqrt{\frac{3}{5}}b_3+\frac{3}{2}\sqrt{\frac{3}{5}}b_4-\frac{3}{2}\sqrt{\frac{2}{5}}b_5$				1
	=	$= \frac{3}{4} \frac{\lambda_t^{(s)}}{\lambda_u^{(s)}} e^{i\gamma} \left(-\frac{C_9 - C_{10}}{C_1 - C_2} (T' - C_1) \right)$	C') + $\frac{C_9 + C_{10}}{C_1 + C_2} (T' + C')$			/
	$\frac{C_9 - C_{10}}{C_1 - C_2} \simeq$	$\frac{C_9 + C_{10}}{C_1 + C_2}$				
	$P'_{EW}^{C} =$	$= -qe^{i\phi}C' \qquad P'_{EW} = -qe^{i\phi}T'$		/		
	$P_{EW} + P_{EW}^C =$	$= -\frac{\sqrt{5}}{2}b_5 = \lambda^2 R_b \left \frac{V_{td}}{V_{ub}} \right \frac{V_{td}}{qe^{i(\phi-\beta)}}$	$\overline{f}(T'+C')\frac{f_{\pi}}{f_K}$			

Exchange and annihilation diagrams neglected.

Motivation and general idea O	Diagrammatic approach 00000	SU(3) group decomposition 00	fits ●0000	Summary 000	Backup oooooooo
Fitting procedu	re				

Observables:

CP asymmetries direct $A_{CP} = \frac{\Gamma(\overline{i} \to \overline{f}) - \Gamma(i \to f)}{\Gamma(\overline{i} \to \overline{f}) + \Gamma(i \to f)} = \frac{|\overline{\mathcal{A}}|^2 - |\mathcal{A}|^2}{|\overline{\mathcal{A}}|^2 + |\mathcal{A}|^2}$ and time-dependent S_{CP} : $A(t) = A_{CP} \cos \phi_d t + S_{CP} \sin \phi_d t$ Branching fraction $\mathcal{B} = \frac{\Gamma(\overline{i} \to \overline{f}) + \Gamma(i \to f)}{2} = \frac{|\overline{\mathcal{A}}|^2 + |\mathcal{A}|^2}{2}$

Motivation and general idea o	Diagrammatic approach 00000	SU(3) group decomposition	fits ●0000	Summary 000	Backup oooooooo
Fitting procedu	re				

Observables:

 χ^2 :

CP asymmetries direct $A_{CP} = \frac{\Gamma(\overline{i} \to \overline{f}) - \Gamma(i \to f)}{\Gamma(\overline{i} \to \overline{f}) + \Gamma(i \to f)} = \frac{|\overline{\mathcal{A}}|^2 - |\mathcal{A}|^2}{|\overline{\mathcal{A}}|^2 + |\mathcal{A}|^2}$ and time-dependent S_{CP} : $A(t) = A_{CP} \cos \phi_d t + S_{CP} \sin \phi_d t$ Branching fraction $\mathcal{B} = \frac{\Gamma(\overline{i} \to \overline{f}) + \Gamma(i \to f)}{2} = \frac{|\overline{\mathcal{A}}|^2 + |\mathcal{A}|^2}{2}$

asymmetries
$$\chi^2 = \sum_i \frac{((A_{CP}^{\exp})_i - (A_{CP}^{\text{theory}})_i)^2}{(\sigma_{\exp})_i^2}$$

ratios of BF $\chi^2 = \sum_{ij} (R_i^{\exp} - R_i^{\text{theory}}) Cov_{ij}^{-1} (R_j^{\exp} - R_j^{\text{theory}})$
 $R = \frac{\mathcal{B}_x}{\mathcal{B}_y}$

Motivation and general idea o	Diagrammatic approach 00000	SU(3) group decomposition	fits ●0000	Summary 000	Backup oooooooo
Fitting procedu	re				

Observables: CP asymmetries direct $A_{CP} = \frac{\Gamma(\overline{i} \to \overline{f}) - \Gamma(i \to f)}{\Gamma(\overline{i} \to \overline{f}) + \Gamma(i \to f)} = \frac{|\overline{A}|^2 - |A|^2}{|\overline{A}|^2 + |A|^2}$ and time-dependent S_{CP} : $A(t) = A_{CP} \cos \phi_d t + S_{CP} \sin \phi_d t$ Branching fraction $\mathcal{B} = \frac{\Gamma(\bar{i} \to \bar{f}) + \Gamma(i \to f)}{2} = \frac{|\overline{\mathcal{A}}|^2 + |\mathcal{A}|^2}{2}$ parameters (including χ^2 : \boldsymbol{q} and $\boldsymbol{\phi}$) asymmetries $\chi^2 = \sum_i \frac{((A_{CP}^{\text{exp}})_i - (A_{CP}^{\text{heory}})_i)^2}{(\sigma_{\text{exp}})_i^2}$ ratios of BF $\chi^2 = \sum_{ij} (R_i^{\text{exp}} - R_i^{\text{theory}}) Cov_{ij}^{-1} (R_i^{\text{exp}} - R_i^{\text{theory}})$ $R = \frac{\mathcal{B}_x}{\mathcal{B}_x}$

Motivation and general idea o	Diagrammatic approach 00000	SU(3) group decomposition 00	fits o⊙ooo	Summary 000	Backup oooooooo

Experimental data

PDG world averages. Mainly BaBar, BELLE(2) and LHCb.

Observable	experimental value	source
$A^{\pi^+\pi^-}$	0.314 ± 0.030	PDG22
$A^{\pi^{+}\pi^{0}}$	0.01 ± 0.04	PDG22, BELLE 2 CONF (2022)
$A^{\pi^{0}\pi^{0}}$	0.33 ± 0.22	PDG22
$S^{\pi^{+}\pi^{-}}$	-0.670 ± 0.030	PDG22
$\mathcal{B}(\pi^+\pi^-)$	$(5.16 \pm 0.19)10^{-6}$	PDG22, BELLE 2 CONF (2021)
$\mathcal{B}(\pi^+\pi^0)$	$(5.6 \pm 0.4)10^{-6}$	PDG22, BELLE 2 CONF (2022)
$\mathcal{B}(\pi^0\pi^0)$	$(1.48 \pm 0.24)10^{-6}$	PDG22, BELLE 2 CONF (2021)
	$ \begin{array}{c} \text{Observable} \\ A^{\pi^{+}\pi^{-}} \\ A^{\pi^{0}\pi^{0}} \\ S^{\pi^{+}\pi^{-}} \\ \hline \mathcal{B}(\pi^{+}\pi^{-}) \\ \mathcal{B}(\pi^{+}\pi^{0}) \\ \mathcal{B}(\pi^{0}\pi^{0}) \end{array} $	$\begin{array}{llllllllllllllllllllllllllllllllllll$

$$\begin{split} R^{\pi^{+}\pi^{-}} &\equiv 2\frac{M_{B^{+}}}{M_{B^{0}_{d}}}\frac{\Phi(m_{\pi}/M_{B^{0}_{d}},m_{\pi}/M_{B^{0}_{d}})}{\Phi(m_{\pi^{0}}/M_{B^{+}},m_{\pi}/M_{B^{+}})} \left[\frac{\mathcal{B}(B^{+} \to \pi^{+}\pi^{0})}{\mathcal{B}(B^{0}_{d} \to \pi^{+}\pi^{-})}\right] \frac{\tau_{B^{0}_{d}}}{\tau_{B^{+}}} \\ R^{\pi^{0}\pi^{0}} &\equiv 2\frac{\Phi(m_{\pi}/M_{B^{0}_{d}},m_{\pi}/M_{B^{0}_{d}})}{\Phi(m_{\pi^{0}}/M_{B^{0}_{d}},m_{\pi^{0}}/M_{B^{0}_{d}})} \left[\frac{\mathcal{B}(B^{0}_{d} \to \pi^{0}\pi^{0})}{\mathcal{B}(B^{0}_{d} \to \pi^{+}\pi^{-})}\right] \\ \Phi(X,Y) &= \sqrt{[1 - (X+Y)^{2}][1 - (X-Y)^{2}]} \end{split}$$

ar, BELLE(2)	and LHCb.	Ś	NCB.I
Observable	experimental value	source	,
$A^{\pi^{+}K^{-}}$	-0.0837 ± 0.0032	PDG22, BELLE 2 CONF (202	21)
$A^{\pi^{+}K^{0}}$	-0.017 ± 0.016	PDG22, BELLE 2 CONF (202	21)
$A^{\pi^0 K^+}$	0.030 ± 0.013	PDG22, BELLE 2 CONF (202	22)
$A^{\pi^{0}K^{0}}$	-0.054 ± 0.121	PDG22, BELLE 2 CONF (202	22)
$S^{\pi^{0}K^{0}}$	0.58 ± 0.17	PDG22	
$\mathcal{B}(\pi^+ K^-)$	$(1.94 \pm 0.05)10^{-5}$	PDG22, BELLE 2 CONF (202	21)
$\mathcal{B}(\pi^+ K^0)$	$(2.35 \pm 0.08)10^{-5}$	PDG22, BELLE 2 CONF (202	21)
$\mathcal{B}(\pi^0 K^+)$	$(1.32 \pm 0.05)10^{-5}$	PDG22, BELLE 2 CONF (202	22)
$\mathcal{B}(\pi^0 K^0)$	$(10.0 \pm 0.5) 10^{-6}$	PDG22, BELLE 2 CONF (202	22)

$$\begin{split} R &\equiv \left[\frac{BF^{corr}(B_d^0 \to \pi^- K^+)}{BF^{corr}(B^+ \to \pi^+ K^0)} \right] \\ R_c &\equiv \left[\frac{BF^{corr}(B^+ \to \pi^0 K^+)}{BF^{corr}(B^+ \to \pi^+ K^0)} \right] \\ R_n &\equiv \left[\frac{BF^{corr}(B_d^0 \to \pi^- K^+)}{BF^{corr}(B_d^0 \to \pi^0 K^0)} \right] \\ R^{\pi\pi-\pi K} &\equiv \left[\frac{BF^{corr}(B^+ \to \pi^+ \pi^0)}{BF^{corr}(B^+ \to \pi^0 K^+)} \right] \end{split}$$

Motivation and general idea O	Diagrammatic approach 00000	SU(3) group decomposition 00	fits 00●00	Summary 000	Backup oooooooo
BELLE 2 Updat	e				

Observable	PDG2022+BELLE 2(2022)	PDG 2022+BELLE 2(2023)
${\cal B}(\pi^0 K^0)$	10.00 ± 0.48	9.96 ± 0.44
$A(\pi^0 K^0)$	-0.05 ± 0.12	-0.005 ± 0.092
$S(\pi^0 K^0)$	0.58 ± 0.17	0.64 ± 0.14

Motivation and general idea

Diagrammatic approa

and the NP phase ϕ in the

group decompositio

with $B^0 \rightarrow \pi^0 K^0$

fits Summa

Backup oooooooc

fits with/without BELLE2023 update on $B^0 \to \pi^0 K^0$

🕸 NCBJ

 χ^2 distribution in q - ϕ plane projection

Solving the 'old' $B \rightarrow K\pi$ puzzle

🕸 NCBJ

00000

$$\begin{aligned} \Delta A_{CP}(K\pi) &= A_{CP}(B^+ \to K^+\pi^0) - A_{CP}(^0 \to K^+\pi^-) \\ &\simeq -2(\Im(r'_C))\sin\gamma + 2\Im(r'_T + r'_C)q\sin\phi \\ \Delta A_{CP}(K\pi) &= 0.114 \pm 0.014 \end{aligned}$$

BELLE 2 2023 Update: $\Delta A_{CP}(K\pi) = 0.110 \pm 0.013$

	SM scenario	NP scenario
ϕ	0	$(68.1 \pm 4.3)^{\circ}$
q	0.614 ± 0.051	1.41 ± 0.16
γ	$(65.3 \pm 1.3)^{\circ}$	$(65.6 \pm 1.3)^{\circ}$
$\Im r'_C$	-0.0569 ± 0.0075	0.0043 ± 0.0061
$\Im r'_T$	0.036 ± 0.010	0.0443 ± 0.0021
ΔA_{CP}	0.108 ± 0.012	0.107 ± 0.012

S NCBJ

- ✓ Diagrammatic approach is a helpful tool to study $B \rightarrow PP$ decays.
- ✓ The ad-hoc parameters $qe^{i\phi}$ are used to search for NP impact.
- ✓ The operator product expansion together with the SU(3) decomposition brings relations between the EW penguin and tree amplitudes reducing the number of parameters in the problem.
- ✓ The joint fit to the $B \to \pi\pi$ and $B \to \pi K$ data does not exclude neither the SM nor the NP scenario.
- ✓ The fit is very sensitive to the measurement of $A_{CP}^{\pi^0 K^0}$ and $S_{CP}^{\pi^0 K^0}$ as well as $\mathcal{B}(\pi^0 K^0)$.
- ✓ New results from BELLE 2 can shed more light to understand the situation (update: it did!).

- ✓ Use this analysis to test NP models.
- ✓ Check the possible impact of the SMEFT operators.
- ✓ See if it is feasible to put constraints on the SMEFT Wilson coefficients.

|--|

Thank you!

○ 000000 0 00 00 000 000 000 000 000 00	

CKM matrix elements

 $V_{ub} W \mathcal{V}_{ub} W \mathcal{V}_{u$

$$\epsilon = \frac{\lambda^2}{1 - \lambda^2} \quad \gamma = \arg\left[-\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}\right] \quad \beta = \arg\left[-\frac{V_{cb}^* V_{cd}}{V_{tb}^* V_{td}}\right]$$

🕸 NCBJ

Gluonic penguin

$$P'_{QCD} = V^*_{tb} V_{ts} P'_t + V^*_{cb} V_{cs} P'_c + V^*_{ub} V_{us} P'_u$$

UT: $V^*_{tb} V_{ts} + V^*_{cb} V_{cs} + V^*_{ub} V_{us} = 0$
$$P'_{QCD} = -V^*_{cb} V^*_{cs} P'_{tc} - V^*_{ub} V_{us} P'_{tu} = A\lambda^3 (P'_{tc} - e^{i\gamma} R_b P'_{tu})$$

$$R_b \equiv \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right| = 0.390 \pm 0.030$$

🕸 NCBJ

$$\sqrt{2}\mathcal{A}(B \to \pi^+\pi^0) = -e^{i\gamma}(T'+C') \stackrel{SU(3)}{=} -\frac{V_{ud}}{V_{us}} \frac{f_\pi}{f_K}(C+T)$$

 $\begin{array}{l} \frac{I\pi}{f_K} = 1.22 \pm 0.01 \text{ - leading (i.e., factorisable) } SU(3) \text{ - breaking corrections } \\ \text{prime } ' \text{ - labels } b \rightarrow d \text{ transitions.} \\ \text{Bose-Einstein statics brings } I(\pi^0\pi^+) = 2 \Rightarrow \Delta I = \frac{3}{2} \\ \overline{Q}'_1 - \overline{Q}'_2 \text{ contribute to } \Delta I = \frac{1}{2} \\ \Rightarrow \text{ Only } \overline{Q}'_1 + \overline{Q}'_2 \text{ contributes to } B^+ \rightarrow \pi^0\pi^+ \\ \text{assuming } SU(3) \text{ only } \overline{Q}_1 + \overline{Q}_2 \text{ contributes to } A_{3/2} \text{ in } B \rightarrow \pi K \end{array}$

$$\frac{\left\langle \pi K(I=\frac{3}{2}) \middle| \overline{Q}_{1} - \overline{Q}_{2} \middle| B^{+} \right\rangle}{\left\langle \pi K(I=\frac{3}{2}) \middle| \overline{Q}_{1} + \overline{Q}_{2} \middle| B^{+} \right\rangle} \equiv -\delta_{SU(3)} e^{i\Delta\varphi}$$

general factorisation hypothesis - $\delta_{SU(3)} \approx 1-3\%$ and $\Delta \varphi$

Motivation and general idea o	Diagrammatic approach 00000	SU(3) group decomposition 00	fits 00000	Summary 000	Backup ooo⊙oooo

Isospin decomposition

$$\begin{split} H_{\Delta I=0} &= \frac{G_F}{\sqrt{2}} \left\{ \sum_{i=1,2} \left[\frac{\lambda_u}{2} C_i(Q_i^u + Q_i^d) + \lambda_c Q_i^c \right] + \lambda_t \sum_{i=3}^{10} C_i Q_i - \lambda_t \sum_{i=7}^{10} C_i Q_i^{\Delta I=1} \right] + h.c. \\ H_{\Delta I=1} &= \frac{G_F}{\sqrt{2}} \left[\sum_{i=1,2} \frac{\lambda_u}{2} C_i(Q_i^u - Q_i^d) + \lambda_t \sum_{i=7}^{10} C_i Q_i^{\Delta I=1} \right] + h.c. \\ A_{3/2} &= \sqrt{\frac{1}{3}} \left\langle \frac{3}{2}, \pm \frac{1}{2} \right| \mathcal{H}_{\Delta I=1} \left| \frac{1}{2}, \pm \frac{1}{2} \right\rangle \\ A_{1/2} &= \pm \sqrt{\frac{2}{3}} \left\langle \frac{1}{2}, \pm \frac{1}{2} \right| \mathcal{H}_{\Delta I=0} \left| \frac{1}{2}, \pm \frac{1}{2} \right\rangle \\ B_{1/2} &= \sqrt{\frac{2}{3}} \left\langle \frac{1}{2}, \pm \frac{1}{2} \right| \mathcal{H}_{\Delta I=0} \left| \frac{1}{2}, \pm \frac{1}{2} \right\rangle \\ A_{-+} &= \mathcal{A}(B^0 \to \pi^- K^+) = A_{3/2} + A_{1/2} - B_{1/2} \\ \mathcal{A}_{00} &= \sqrt{2}\mathcal{A}(B^0 \to \pi^0 K^0) = 2A_{3/2} - A_{1/2} + B_{1/2} \\ \mathcal{A}_{0+} &= \sqrt{2}\mathcal{A}(B^+ \to \pi^0 K^+) = 2A_{3/2} - A_{1/2} - B_{1/2} \end{split}$$

🕸 NCBJ

$$\begin{split} \mathcal{A}_{-+} &= \mathcal{A}(B^0 \to \pi^- K^+) = A_{3/2} + A_{1/2} - B_{1/2} \\ \mathcal{A}_{00} &= \sqrt{2} \mathcal{A}(B^0 \to \pi^0 K^0) = 2A_{3/2} - A_{1/2} + B_{1/2} \\ \mathcal{A}_{-+} &= -T e^{i\gamma} + P_{tc} - P'_{uc} e^{i\gamma} - \frac{2}{3} P^C_{EW} \\ \mathcal{A}_{00} &= -C e^{i\gamma} - P_{tc} + P_{uc} e^{i\gamma} - P_{EW} - \frac{1}{3} P^C_{EW} \\ \mathcal{A}_{-+} + \mathcal{A}_{00} = 3A_{3/2} = -(C+T) e^{i\gamma} - P_{EW} - P^C_{EW} = -(C+T) (e^{i\gamma} - q e^{i\omega} e^{i\phi}) \\ q e^{i(\phi+\omega)} \equiv -\frac{P_{EW} + P^C_{EW}}{C+T} \end{split}$$

$$\mathcal{H}_{T} = \frac{G_{F}}{\sqrt{2}} \left(\lambda_{u}^{(s)} [\frac{1}{2} (c_{1} - c_{2}) (-\bar{\mathbf{3}}_{I=0}^{(a)} - \mathbf{6}_{I=1}) + \frac{1}{2} (c_{1} + c_{2}) (-\overline{\mathbf{15}}_{I=1} - \frac{1}{\sqrt{2}} \overline{\mathbf{15}}_{I=0} + \frac{1}{\sqrt{2}} \bar{\mathbf{3}}_{I=0}^{(s)}) \right. \\ \left. + \lambda_{u}^{(d)} [\frac{1}{2} (c_{1} - c_{2}) (\mathbf{6}_{I=\frac{1}{2}} - \bar{\mathbf{3}}_{I=\frac{1}{2}}^{(a)}) + \frac{1}{2} (c_{1} + c_{2}) (-\frac{2}{\sqrt{3}} \overline{\mathbf{15}}_{I=\frac{3}{2}} - \frac{1}{\sqrt{6}} \overline{\mathbf{15}}_{I=\frac{1}{2}} + \frac{1}{\sqrt{2}} \bar{\mathbf{3}}_{I=\frac{1}{2}}^{(s)}) \right)$$

$$\mathcal{H}_{EWP} \simeq -\lambda_t^{(s)} \left(c_9 Q_9^{(s)} + c_{10} Q_{10}^{(s)} \right) - \lambda_t^{(d)} \left(c_9 Q_9^{(d)} + c_{10} Q_{10}^{(d)} \right) = - \frac{\lambda_t^{(s)}}{2} \left(\frac{c_9 - c_{10}}{2} (3 \cdot \mathbf{6}_{I=1} + \bar{\mathbf{3}}_{I=0}^{(a)}) + \frac{c_9 + c_{10}}{2} (-3 \cdot \overline{\mathbf{15}}_{I=1} - \frac{3}{\sqrt{2}} \overline{\mathbf{15}}_{I=0} - \frac{1}{\sqrt{2}} \bar{\mathbf{3}}_{I=0}^{(s)}) \right) - \frac{\lambda_t^{(d)}}{2} \left(\frac{c_9 - c_{10}}{2} (-3 \cdot \mathbf{6}_{I=\frac{1}{2}} + \bar{\mathbf{3}}_{I=\frac{1}{2}}^{(a)}) + \frac{c_9 + c_{10}}{2} (-\sqrt{\frac{3}{2}} \cdot \overline{\mathbf{15}}_{I=\frac{1}{2}} - 2\sqrt{3} \cdot \overline{\mathbf{15}}_{I=\frac{3}{2}} - \frac{1}{\sqrt{2}} \bar{\mathbf{3}}_{I=\frac{1}{2}}^{(s)}) \right)$$

🕸 NCBJ

Motivation and general idea O	Diagrammatic approach 00000	SU(3) group decomposition 00	fits 00000	Summary 000	Backup ooooooooo

SNCBJ

$$\begin{split} A_{3/2} &= \sqrt{\frac{1}{3}} \left\langle \frac{3}{2}, \pm \frac{1}{2} \right| \mathcal{H}_{\Delta I=1} \left| \frac{1}{2}, \pm \frac{1}{2} \right\rangle \\ &= \sqrt{\frac{1}{3}} \left\langle \frac{3}{2}, \pm \frac{1}{2} \right| \frac{1}{2} \left(1 - \frac{3}{2} \frac{\lambda_t (C_9 + C_{10})}{\lambda_u (C_1 + C_2)} \right) \lambda_u (C_1 + C_2) (\overline{Q}_1 + \overline{Q}_2) \left| \frac{1}{2}, \pm \frac{1}{2} \right\rangle \\ A_{3/2} &= -\frac{1}{3} (C + T) (e^{i\gamma} - q e^{i\omega} e^{i\phi}) \\ &\text{If } \left\langle \frac{3}{2}, \pm \frac{1}{2} \right| \frac{\sqrt{3}}{2} \lambda_u (C_1 + C_2) (\overline{Q}_1 + \overline{Q}_2) \left| \frac{1}{2}, \pm \frac{1}{2} \right\rangle = (T + C) e^{i\gamma} \\ q &= -\frac{3}{2\lambda^2 R_b} \frac{C_9 + C_{10}}{C_1 + C_2} = 0.64 \pm 0.05 \\ &\frac{\lambda_u}{\lambda_t} \approx -\lambda^2 R_b e^{i\gamma} \quad \lambda \approx 0.22 \text{ and } R_b = \frac{1}{\lambda} \frac{V_{ub}}{V_{cb}} \approx 0.41 \pm 0.07 \end{split}$$

[Benjamin Grinstein and Richard F. Lebec ^{ŵлсвј}

Let us now consider SU(3)-breaking corrections to the lowest-order Hamiltonian. The simplest such breaking originates through insertions of the strange quark mass,

$$\mathcal{H}_s = m_s \bar{s}s,\tag{4.3}$$

which transforms as an I = 0, Y = 0 octet plus singlet in SU(3). Clearly neither piece changes the isospin of the Hamiltonian; this would be accomplished by insertions of the up or down masses, which are much smaller. Let us consider SU(3) breaking linear in m_s . In the case of $B \to PP$, the Hamiltonian contains pieces transforming under

$$(\overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{15}}) \otimes (\mathbf{1} \oplus \mathbf{8}) = \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{15}} \oplus \mathbf{24} \oplus \overline{\mathbf{42}}, \tag{4.4}$$